Spaces:
Runtime error
Runtime error
File size: 12,533 Bytes
df5230f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
import random
from typing import Optional
import cv2
import numpy as np
import torch
from diffusers.models import FluxControlNetModel
from facexlib.recognition import init_recognition_model
from huggingface_hub import snapshot_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
from PIL import Image
from .pipeline_flux_infusenet import FluxInfuseNetPipeline
from .resampler import Resampler
def seed_everything(seed, deterministic=False):
"""Set random seed.
Args:
seed (int): Seed to be used.
deterministic (bool): Whether to set the deterministic option for
CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
to True and `torch.backends.cudnn.benchmark` to False.
Default: False.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
if deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# modified from https://github.com/instantX-research/InstantID/blob/main/pipeline_stable_diffusion_xl_instantid.py
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
stickwidth = 4
limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
kps = np.array(kps)
w, h = image_pil.size
out_img = np.zeros([h, w, 3])
for i in range(len(limbSeq)):
index = limbSeq[i]
color = color_list[index[0]]
x = kps[index][:, 0]
y = kps[index][:, 1]
length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
out_img = (out_img * 0.6).astype(np.uint8)
for idx_kp, kp in enumerate(kps):
color = color_list[idx_kp]
x, y = kp
out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)
out_img_pil = Image.fromarray(out_img.astype(np.uint8))
return out_img_pil
def extract_arcface_bgr_embedding(in_image, landmark, arcface_model=None, in_settings=None):
kps = landmark
arc_face_image = face_align.norm_crop(in_image, landmark=np.array(kps), image_size=112)
arc_face_image = torch.from_numpy(arc_face_image).unsqueeze(0).permute(0,3,1,2) / 255.
arc_face_image = 2 * arc_face_image - 1
arc_face_image = arc_face_image.cuda().contiguous()
if arcface_model is None:
arcface_model = init_recognition_model('arcface', device='cuda')
face_emb = arcface_model(arc_face_image)[0] # [512], normalized
return face_emb
def resize_and_pad_image(source_img, target_img_size):
# Get original and target sizes
source_img_size = source_img.size
target_width, target_height = target_img_size
# Determine the new size based on the shorter side of target_img
if target_width <= target_height:
new_width = target_width
new_height = int(target_width * (source_img_size[1] / source_img_size[0]))
else:
new_height = target_height
new_width = int(target_height * (source_img_size[0] / source_img_size[1]))
# Resize the source image using LANCZOS interpolation for high quality
resized_source_img = source_img.resize((new_width, new_height), Image.LANCZOS)
# Compute padding to center resized image
pad_left = (target_width - new_width) // 2
pad_top = (target_height - new_height) // 2
# Create a new image with white background
padded_img = Image.new("RGB", target_img_size, (255, 255, 255))
padded_img.paste(resized_source_img, (pad_left, pad_top))
return padded_img
class InfUFluxPipeline:
def __init__(
self,
base_model_path,
infu_model_path,
insightface_root_path = './',
image_proj_num_tokens=8,
infu_flux_version='v1.0',
model_version='aes_stage2',
):
self.infu_flux_version = infu_flux_version
self.model_version = model_version
# Load pipeline
try:
infusenet_path = os.path.join(infu_model_path, 'InfuseNetModel')
self.infusenet = FluxControlNetModel.from_pretrained(infusenet_path, torch_dtype=torch.bfloat16)
except:
print("No InfiniteYou model found. Downloading from HuggingFace `ByteDance/InfiniteYou` to `./models/InfiniteYou` ...")
snapshot_download(repo_id='ByteDance/InfiniteYou', local_dir='./models/InfiniteYou', local_dir_use_symlinks=False)
infu_model_path = os.path.join('./models/InfiniteYou', f'infu_flux_{infu_flux_version}', model_version)
infusenet_path = os.path.join(infu_model_path, 'InfuseNetModel')
self.infusenet = FluxControlNetModel.from_pretrained(infusenet_path, torch_dtype=torch.bfloat16)
insightface_root_path = './models/InfiniteYou/supports/insightface'
try:
pipe = FluxInfuseNetPipeline.from_pretrained(
base_model_path,
controlnet=self.infusenet,
torch_dtype=torch.bfloat16,
)
except:
try:
pipe = FluxInfuseNetPipeline.from_single_file(
base_model_path,
controlnet=self.infusenet,
torch_dtype=torch.bfloat16,
)
except Exception as e:
print(e)
print('\nIf you are using `black-forest-labs/FLUX.1-dev` and have not downloaded it into a local directory, '
'please accept the agreement and obtain access at https://huggingface.co/black-forest-labs/FLUX.1-dev. '
'Then, use `huggingface-cli login` and your access tokens at https://huggingface.co/settings/tokens to authenticate. '
'After that, run the code again. If you have downloaded it, please use `base_model_path` to specify the correct path.')
print('\nIf you are using other models, please download them to a local directory and use `base_model_path` to specify the correct path.')
exit()
pipe.to('cuda', torch.bfloat16)
self.pipe = pipe
# Load image proj model
num_tokens = image_proj_num_tokens
image_emb_dim = 512
image_proj_model = Resampler(
dim=1280,
depth=4,
dim_head=64,
heads=20,
num_queries=num_tokens,
embedding_dim=image_emb_dim,
output_dim=4096,
ff_mult=4,
)
image_proj_model_path = os.path.join(infu_model_path, 'image_proj_model.bin')
ipm_state_dict = torch.load(image_proj_model_path, map_location="cpu")
image_proj_model.load_state_dict(ipm_state_dict['image_proj'])
del ipm_state_dict
image_proj_model.to('cuda', torch.bfloat16)
image_proj_model.eval()
self.image_proj_model = image_proj_model
# Load face encoder
self.app_640 = FaceAnalysis(name='antelopev2',
root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app_640.prepare(ctx_id=0, det_size=(640, 640))
self.app_320 = FaceAnalysis(name='antelopev2',
root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app_320.prepare(ctx_id=0, det_size=(320, 320))
self.app_160 = FaceAnalysis(name='antelopev2',
root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
self.app_160.prepare(ctx_id=0, det_size=(160, 160))
self.arcface_model = init_recognition_model('arcface', device='cuda')
def load_loras(self, loras):
names, scales = [],[]
for lora_path, lora_name, lora_scale in loras:
if lora_path != "":
print(f"loading lora {lora_path}")
self.pipe.load_lora_weights(lora_path, adapter_name = lora_name)
names.append(lora_name)
scales.append(lora_scale)
if len(names) > 0:
self.pipe.set_adapters(names, adapter_weights=scales)
def _detect_face(self, id_image_cv2):
face_info = self.app_640.get(id_image_cv2)
if len(face_info) > 0:
return face_info
face_info = self.app_320.get(id_image_cv2)
if len(face_info) > 0:
return face_info
face_info = self.app_160.get(id_image_cv2)
return face_info
def __call__(
self,
id_image: Image.Image, # PIL.Image.Image (RGB)
prompt: str,
control_image: Optional[Image.Image] = None, # PIL.Image.Image (RGB) or None
width = 864,
height = 1152,
seed = 42,
guidance_scale = 3.5,
num_steps = 30,
infusenet_conditioning_scale = 1.0,
infusenet_guidance_start = 0.0,
infusenet_guidance_end = 1.0,
):
# Extract ID embeddings
print('Preparing ID embeddings')
id_image_cv2 = cv2.cvtColor(np.array(id_image), cv2.COLOR_RGB2BGR)
face_info = self._detect_face(id_image_cv2)
if len(face_info) == 0:
raise ValueError('No face detected in the input ID image')
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
landmark = face_info['kps']
id_embed = extract_arcface_bgr_embedding(id_image_cv2, landmark, self.arcface_model)
id_embed = id_embed.clone().unsqueeze(0).float().cuda()
id_embed = id_embed.reshape([1, -1, 512])
id_embed = id_embed.to(device='cuda', dtype=torch.bfloat16)
with torch.no_grad():
id_embed = self.image_proj_model(id_embed)
bs_embed, seq_len, _ = id_embed.shape
id_embed = id_embed.repeat(1, 1, 1)
id_embed = id_embed.view(bs_embed * 1, seq_len, -1)
id_embed = id_embed.to(device='cuda', dtype=torch.bfloat16)
# Load control image
print('Preparing the control image')
if control_image is not None:
control_image = control_image.convert("RGB")
control_image = resize_and_pad_image(control_image, (width, height))
face_info = self._detect_face(cv2.cvtColor(np.array(control_image), cv2.COLOR_RGB2BGR))
if len(face_info) == 0:
raise ValueError('No face detected in the control image')
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
control_image = draw_kps(control_image, face_info['kps'])
else:
out_img = np.zeros([height, width, 3])
control_image = Image.fromarray(out_img.astype(np.uint8))
# Perform inference
print('Generating image')
seed_everything(seed)
image = self.pipe(
prompt=prompt,
controlnet_prompt_embeds=id_embed,
control_image=control_image,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
controlnet_guidance_scale=1.0,
controlnet_conditioning_scale=infusenet_conditioning_scale,
control_guidance_start=infusenet_guidance_start,
control_guidance_end=infusenet_guidance_end,
height=height,
width=width,
).images[0]
return image
|