File size: 12,533 Bytes
df5230f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import os
import random
from typing import Optional

import cv2
import numpy as np
import torch
from diffusers.models import FluxControlNetModel
from facexlib.recognition import init_recognition_model
from huggingface_hub import snapshot_download
from insightface.app import FaceAnalysis
from insightface.utils import face_align
from PIL import Image

from .pipeline_flux_infusenet import FluxInfuseNetPipeline
from .resampler import Resampler


def seed_everything(seed, deterministic=False):
    """Set random seed.

    Args:
        seed (int): Seed to be used.
        deterministic (bool): Whether to set the deterministic option for
            CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
            to True and `torch.backends.cudnn.benchmark` to False.
            Default: False.
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    if deterministic:
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False


# modified from https://github.com/instantX-research/InstantID/blob/main/pipeline_stable_diffusion_xl_instantid.py
def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]):
    stickwidth = 4
    limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]])
    kps = np.array(kps)

    w, h = image_pil.size
    out_img = np.zeros([h, w, 3])

    for i in range(len(limbSeq)):
        index = limbSeq[i]
        color = color_list[index[0]]

        x = kps[index][:, 0]
        y = kps[index][:, 1]
        length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5
        angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1]))
        polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
        out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color)
    out_img = (out_img * 0.6).astype(np.uint8)

    for idx_kp, kp in enumerate(kps):
        color = color_list[idx_kp]
        x, y = kp
        out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1)

    out_img_pil = Image.fromarray(out_img.astype(np.uint8))
    return out_img_pil


def extract_arcface_bgr_embedding(in_image, landmark, arcface_model=None, in_settings=None):
    kps = landmark
    arc_face_image = face_align.norm_crop(in_image, landmark=np.array(kps), image_size=112)
    arc_face_image = torch.from_numpy(arc_face_image).unsqueeze(0).permute(0,3,1,2) / 255.
    arc_face_image = 2 * arc_face_image - 1
    arc_face_image = arc_face_image.cuda().contiguous()
    if arcface_model is None:
        arcface_model = init_recognition_model('arcface', device='cuda')
    face_emb = arcface_model(arc_face_image)[0] # [512], normalized
    return face_emb


def resize_and_pad_image(source_img, target_img_size):
    # Get original and target sizes
    source_img_size = source_img.size
    target_width, target_height = target_img_size
    
    # Determine the new size based on the shorter side of target_img
    if target_width <= target_height:
        new_width = target_width
        new_height = int(target_width * (source_img_size[1] / source_img_size[0]))
    else:
        new_height = target_height
        new_width = int(target_height * (source_img_size[0] / source_img_size[1]))
    
    # Resize the source image using LANCZOS interpolation for high quality
    resized_source_img = source_img.resize((new_width, new_height), Image.LANCZOS)
    
    # Compute padding to center resized image
    pad_left = (target_width - new_width) // 2
    pad_top = (target_height - new_height) // 2
    
    # Create a new image with white background
    padded_img = Image.new("RGB", target_img_size, (255, 255, 255))
    padded_img.paste(resized_source_img, (pad_left, pad_top))
    
    return padded_img


class InfUFluxPipeline:
    def __init__(
            self, 
            base_model_path, 
            infu_model_path, 
            insightface_root_path = './',
            image_proj_num_tokens=8,
            infu_flux_version='v1.0',
            model_version='aes_stage2',
        ):

        self.infu_flux_version = infu_flux_version
        self.model_version = model_version
        
        # Load pipeline
        try:
            infusenet_path = os.path.join(infu_model_path, 'InfuseNetModel')
            self.infusenet = FluxControlNetModel.from_pretrained(infusenet_path, torch_dtype=torch.bfloat16)
        except:
            print("No InfiniteYou model found. Downloading from HuggingFace `ByteDance/InfiniteYou` to `./models/InfiniteYou` ...")
            snapshot_download(repo_id='ByteDance/InfiniteYou', local_dir='./models/InfiniteYou', local_dir_use_symlinks=False)
            infu_model_path = os.path.join('./models/InfiniteYou', f'infu_flux_{infu_flux_version}', model_version)
            infusenet_path = os.path.join(infu_model_path, 'InfuseNetModel')
            self.infusenet = FluxControlNetModel.from_pretrained(infusenet_path, torch_dtype=torch.bfloat16)
            insightface_root_path = './models/InfiniteYou/supports/insightface'
        try:
            pipe = FluxInfuseNetPipeline.from_pretrained(
                base_model_path,
                controlnet=self.infusenet,
                torch_dtype=torch.bfloat16,
            )
        except:
            try:
                pipe = FluxInfuseNetPipeline.from_single_file(
                    base_model_path,
                    controlnet=self.infusenet,
                    torch_dtype=torch.bfloat16,
                )
            except Exception as e:
                print(e)
                print('\nIf you are using `black-forest-labs/FLUX.1-dev` and have not downloaded it into a local directory, '
                      'please accept the agreement and obtain access at https://huggingface.co/black-forest-labs/FLUX.1-dev. '
                      'Then, use `huggingface-cli login` and your access tokens at https://huggingface.co/settings/tokens to authenticate. '
                      'After that, run the code again. If you have downloaded it, please use `base_model_path` to specify the correct path.')
                print('\nIf you are using other models, please download them to a local directory and use `base_model_path` to specify the correct path.')
                exit()
        pipe.to('cuda', torch.bfloat16)
        self.pipe = pipe

        # Load image proj model
        num_tokens = image_proj_num_tokens
        image_emb_dim = 512
        image_proj_model = Resampler(
            dim=1280,
            depth=4,
            dim_head=64,
            heads=20,
            num_queries=num_tokens,
            embedding_dim=image_emb_dim,
            output_dim=4096,
            ff_mult=4,
        )
        image_proj_model_path = os.path.join(infu_model_path, 'image_proj_model.bin')
        ipm_state_dict = torch.load(image_proj_model_path, map_location="cpu")
        image_proj_model.load_state_dict(ipm_state_dict['image_proj'])
        del ipm_state_dict
        image_proj_model.to('cuda', torch.bfloat16)
        image_proj_model.eval()

        self.image_proj_model = image_proj_model

        # Load face encoder
        self.app_640 = FaceAnalysis(name='antelopev2', 
                                root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        self.app_640.prepare(ctx_id=0, det_size=(640, 640))

        self.app_320 = FaceAnalysis(name='antelopev2', 
                                root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        self.app_320.prepare(ctx_id=0, det_size=(320, 320))

        self.app_160 = FaceAnalysis(name='antelopev2', 
                                root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
        self.app_160.prepare(ctx_id=0, det_size=(160, 160))

        self.arcface_model = init_recognition_model('arcface', device='cuda')

    def load_loras(self, loras):
        names, scales = [],[]
        for lora_path, lora_name, lora_scale in loras:
            if lora_path != "":
                print(f"loading lora {lora_path}")
                self.pipe.load_lora_weights(lora_path, adapter_name = lora_name)
                names.append(lora_name)
                scales.append(lora_scale)

        if len(names) > 0:
            self.pipe.set_adapters(names, adapter_weights=scales)

    def _detect_face(self, id_image_cv2):
        face_info = self.app_640.get(id_image_cv2)
        if len(face_info) > 0:
            return face_info
        
        face_info = self.app_320.get(id_image_cv2)
        if len(face_info) > 0:
            return face_info

        face_info = self.app_160.get(id_image_cv2)
        return face_info

    def __call__(
        self,
        id_image: Image.Image,  # PIL.Image.Image (RGB)
        prompt: str,
        control_image: Optional[Image.Image] = None,  # PIL.Image.Image (RGB) or None
        width = 864,
        height = 1152,
        seed = 42,
        guidance_scale = 3.5,
        num_steps = 30,
        infusenet_conditioning_scale = 1.0,
        infusenet_guidance_start = 0.0,
        infusenet_guidance_end = 1.0,
    ):        
        # Extract ID embeddings
        print('Preparing ID embeddings')
        id_image_cv2 = cv2.cvtColor(np.array(id_image), cv2.COLOR_RGB2BGR)
        face_info = self._detect_face(id_image_cv2)
        if len(face_info) == 0:
            raise ValueError('No face detected in the input ID image')
        
        face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
        landmark = face_info['kps']
        id_embed = extract_arcface_bgr_embedding(id_image_cv2, landmark, self.arcface_model)
        id_embed = id_embed.clone().unsqueeze(0).float().cuda()
        id_embed = id_embed.reshape([1, -1, 512])
        id_embed = id_embed.to(device='cuda', dtype=torch.bfloat16)
        with torch.no_grad():
            id_embed = self.image_proj_model(id_embed)
            bs_embed, seq_len, _ = id_embed.shape
            id_embed = id_embed.repeat(1, 1, 1)
            id_embed = id_embed.view(bs_embed * 1, seq_len, -1)
            id_embed = id_embed.to(device='cuda', dtype=torch.bfloat16)
        
        # Load control image
        print('Preparing the control image')
        if control_image is not None:
            control_image = control_image.convert("RGB")
            control_image = resize_and_pad_image(control_image, (width, height))
            face_info = self._detect_face(cv2.cvtColor(np.array(control_image), cv2.COLOR_RGB2BGR))
            if len(face_info) == 0:
                raise ValueError('No face detected in the control image')
            face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
            control_image = draw_kps(control_image, face_info['kps'])
        else:
            out_img = np.zeros([height, width, 3])
            control_image = Image.fromarray(out_img.astype(np.uint8))

        # Perform inference
        print('Generating image')
        seed_everything(seed)
        image = self.pipe(
            prompt=prompt,
            controlnet_prompt_embeds=id_embed,
            control_image=control_image,
            guidance_scale=guidance_scale,
            num_inference_steps=num_steps,
            controlnet_guidance_scale=1.0,
            controlnet_conditioning_scale=infusenet_conditioning_scale,
            control_guidance_start=infusenet_guidance_start,
            control_guidance_end=infusenet_guidance_end,
            height=height,
            width=width,
        ).images[0]

        return image