# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os import random from typing import Optional import cv2 import numpy as np import torch from diffusers.models import FluxControlNetModel from facexlib.recognition import init_recognition_model from huggingface_hub import snapshot_download from insightface.app import FaceAnalysis from insightface.utils import face_align from PIL import Image from .pipeline_flux_infusenet import FluxInfuseNetPipeline from .resampler import Resampler def seed_everything(seed, deterministic=False): """Set random seed. Args: seed (int): Seed to be used. deterministic (bool): Whether to set the deterministic option for CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` to True and `torch.backends.cudnn.benchmark` to False. Default: False. """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) os.environ['PYTHONHASHSEED'] = str(seed) if deterministic: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # modified from https://github.com/instantX-research/InstantID/blob/main/pipeline_stable_diffusion_xl_instantid.py def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]): stickwidth = 4 limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) kps = np.array(kps) w, h = image_pil.size out_img = np.zeros([h, w, 3]) for i in range(len(limbSeq)): index = limbSeq[i] color = color_list[index[0]] x = kps[index][:, 0] y = kps[index][:, 1] length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1) out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) out_img = (out_img * 0.6).astype(np.uint8) for idx_kp, kp in enumerate(kps): color = color_list[idx_kp] x, y = kp out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) out_img_pil = Image.fromarray(out_img.astype(np.uint8)) return out_img_pil def extract_arcface_bgr_embedding(in_image, landmark, arcface_model=None, in_settings=None): kps = landmark arc_face_image = face_align.norm_crop(in_image, landmark=np.array(kps), image_size=112) arc_face_image = torch.from_numpy(arc_face_image).unsqueeze(0).permute(0,3,1,2) / 255. arc_face_image = 2 * arc_face_image - 1 arc_face_image = arc_face_image.cuda().contiguous() if arcface_model is None: arcface_model = init_recognition_model('arcface', device='cuda') face_emb = arcface_model(arc_face_image)[0] # [512], normalized return face_emb def resize_and_pad_image(source_img, target_img_size): # Get original and target sizes source_img_size = source_img.size target_width, target_height = target_img_size # Determine the new size based on the shorter side of target_img if target_width <= target_height: new_width = target_width new_height = int(target_width * (source_img_size[1] / source_img_size[0])) else: new_height = target_height new_width = int(target_height * (source_img_size[0] / source_img_size[1])) # Resize the source image using LANCZOS interpolation for high quality resized_source_img = source_img.resize((new_width, new_height), Image.LANCZOS) # Compute padding to center resized image pad_left = (target_width - new_width) // 2 pad_top = (target_height - new_height) // 2 # Create a new image with white background padded_img = Image.new("RGB", target_img_size, (255, 255, 255)) padded_img.paste(resized_source_img, (pad_left, pad_top)) return padded_img class InfUFluxPipeline: def __init__( self, base_model_path, infu_model_path, insightface_root_path = './', image_proj_num_tokens=8, infu_flux_version='v1.0', model_version='aes_stage2', ): self.infu_flux_version = infu_flux_version self.model_version = model_version # Load pipeline try: infusenet_path = os.path.join(infu_model_path, 'InfuseNetModel') self.infusenet = FluxControlNetModel.from_pretrained(infusenet_path, torch_dtype=torch.bfloat16) except: print("No InfiniteYou model found. Downloading from HuggingFace `ByteDance/InfiniteYou` to `./models/InfiniteYou` ...") snapshot_download(repo_id='ByteDance/InfiniteYou', local_dir='./models/InfiniteYou', local_dir_use_symlinks=False) infu_model_path = os.path.join('./models/InfiniteYou', f'infu_flux_{infu_flux_version}', model_version) infusenet_path = os.path.join(infu_model_path, 'InfuseNetModel') self.infusenet = FluxControlNetModel.from_pretrained(infusenet_path, torch_dtype=torch.bfloat16) insightface_root_path = './models/InfiniteYou/supports/insightface' try: pipe = FluxInfuseNetPipeline.from_pretrained( base_model_path, controlnet=self.infusenet, torch_dtype=torch.bfloat16, ) except: try: pipe = FluxInfuseNetPipeline.from_single_file( base_model_path, controlnet=self.infusenet, torch_dtype=torch.bfloat16, ) except Exception as e: print(e) print('\nIf you are using `black-forest-labs/FLUX.1-dev` and have not downloaded it into a local directory, ' 'please accept the agreement and obtain access at https://huggingface.co/black-forest-labs/FLUX.1-dev. ' 'Then, use `huggingface-cli login` and your access tokens at https://huggingface.co/settings/tokens to authenticate. ' 'After that, run the code again. If you have downloaded it, please use `base_model_path` to specify the correct path.') print('\nIf you are using other models, please download them to a local directory and use `base_model_path` to specify the correct path.') exit() pipe.to('cuda', torch.bfloat16) self.pipe = pipe # Load image proj model num_tokens = image_proj_num_tokens image_emb_dim = 512 image_proj_model = Resampler( dim=1280, depth=4, dim_head=64, heads=20, num_queries=num_tokens, embedding_dim=image_emb_dim, output_dim=4096, ff_mult=4, ) image_proj_model_path = os.path.join(infu_model_path, 'image_proj_model.bin') ipm_state_dict = torch.load(image_proj_model_path, map_location="cpu") image_proj_model.load_state_dict(ipm_state_dict['image_proj']) del ipm_state_dict image_proj_model.to('cuda', torch.bfloat16) image_proj_model.eval() self.image_proj_model = image_proj_model # Load face encoder self.app_640 = FaceAnalysis(name='antelopev2', root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) self.app_640.prepare(ctx_id=0, det_size=(640, 640)) self.app_320 = FaceAnalysis(name='antelopev2', root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) self.app_320.prepare(ctx_id=0, det_size=(320, 320)) self.app_160 = FaceAnalysis(name='antelopev2', root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) self.app_160.prepare(ctx_id=0, det_size=(160, 160)) self.arcface_model = init_recognition_model('arcface', device='cuda') def load_loras(self, loras): names, scales = [],[] for lora_path, lora_name, lora_scale in loras: if lora_path != "": print(f"loading lora {lora_path}") self.pipe.load_lora_weights(lora_path, adapter_name = lora_name) names.append(lora_name) scales.append(lora_scale) if len(names) > 0: self.pipe.set_adapters(names, adapter_weights=scales) def _detect_face(self, id_image_cv2): face_info = self.app_640.get(id_image_cv2) if len(face_info) > 0: return face_info face_info = self.app_320.get(id_image_cv2) if len(face_info) > 0: return face_info face_info = self.app_160.get(id_image_cv2) return face_info def __call__( self, id_image: Image.Image, # PIL.Image.Image (RGB) prompt: str, control_image: Optional[Image.Image] = None, # PIL.Image.Image (RGB) or None width = 864, height = 1152, seed = 42, guidance_scale = 3.5, num_steps = 30, infusenet_conditioning_scale = 1.0, infusenet_guidance_start = 0.0, infusenet_guidance_end = 1.0, ): # Extract ID embeddings print('Preparing ID embeddings') id_image_cv2 = cv2.cvtColor(np.array(id_image), cv2.COLOR_RGB2BGR) face_info = self._detect_face(id_image_cv2) if len(face_info) == 0: raise ValueError('No face detected in the input ID image') face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face landmark = face_info['kps'] id_embed = extract_arcface_bgr_embedding(id_image_cv2, landmark, self.arcface_model) id_embed = id_embed.clone().unsqueeze(0).float().cuda() id_embed = id_embed.reshape([1, -1, 512]) id_embed = id_embed.to(device='cuda', dtype=torch.bfloat16) with torch.no_grad(): id_embed = self.image_proj_model(id_embed) bs_embed, seq_len, _ = id_embed.shape id_embed = id_embed.repeat(1, 1, 1) id_embed = id_embed.view(bs_embed * 1, seq_len, -1) id_embed = id_embed.to(device='cuda', dtype=torch.bfloat16) # Load control image print('Preparing the control image') if control_image is not None: control_image = control_image.convert("RGB") control_image = resize_and_pad_image(control_image, (width, height)) face_info = self._detect_face(cv2.cvtColor(np.array(control_image), cv2.COLOR_RGB2BGR)) if len(face_info) == 0: raise ValueError('No face detected in the control image') face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face control_image = draw_kps(control_image, face_info['kps']) else: out_img = np.zeros([height, width, 3]) control_image = Image.fromarray(out_img.astype(np.uint8)) # Perform inference print('Generating image') seed_everything(seed) image = self.pipe( prompt=prompt, controlnet_prompt_embeds=id_embed, control_image=control_image, guidance_scale=guidance_scale, num_inference_steps=num_steps, controlnet_guidance_scale=1.0, controlnet_conditioning_scale=infusenet_conditioning_scale, control_guidance_start=infusenet_guidance_start, control_guidance_end=infusenet_guidance_end, height=height, width=width, ).images[0] return image