hf-legisqa / app.py
gabrielaltay's picture
trace
385ebea
raw
history blame
16 kB
from collections import defaultdict
import json
import os
import re
from langchain_core.documents import Document
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_community.callbacks import get_openai_callback
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores.utils import DistanceStrategy
from langchain_openai import ChatOpenAI
from langchain_pinecone import PineconeVectorStore
from pinecone import Pinecone
import streamlit as st
st.set_page_config(layout="wide", page_title="LegisQA")
os.environ["LANGCHAIN_API_KEY"] = st.secrets["langchain_api_key"]
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = st.secrets["langchain_project"]
SS = st.session_state
SEED = 292764
CONGRESS_NUMBERS = [113, 114, 115, 116, 117, 118]
SPONSOR_PARTIES = ["D", "R", "L", "I"]
CONGRESS_GOV_TYPE_MAP = {
"hconres": "house-concurrent-resolution",
"hjres": "house-joint-resolution",
"hr": "house-bill",
"hres": "house-resolution",
"s": "senate-bill",
"sconres": "senate-concurrent-resolution",
"sjres": "senate-joint-resolution",
"sres": "senate-resolution",
}
OPENAI_CHAT_MODELS = [
"gpt-3.5-turbo-0125",
"gpt-4-0125-preview",
]
PREAMBLE = "You are an expert analyst. Use the following excerpts from US congressional legislation to respond to the user's query."
PROMPT_TEMPLATES = {
"v1": PREAMBLE
+ """ If you don't know how to respond, just tell the user.
{context}
Question: {question}""",
"v2": PREAMBLE
+ """ Each snippet starts with a header that includes a unique snippet number (snippet_num), a legis_id, and a title. Your response should cite particular snippets using legis_id and title. If you don't know how to respond, just tell the user.
{context}
Question: {question}""",
"v3": PREAMBLE
+ """ Each excerpt starts with a header that includes a legis_id, and a title followed by one or more text snippets. When using text snippets in your response, you should cite the legis_id and title. If you don't know how to respond, just tell the user.
{context}
Question: {question}""",
"v4": PREAMBLE
+ """ The excerpts are formatted as a JSON list. Each JSON object has "legis_id", "title", and "snippets" keys. If a snippet is useful in writing part of your response, then cite the "title" and "legis_id" in the response. If you don't know how to respond, just tell the user.
{context}
Query: {question}""",
}
def get_sponsor_url(bioguide_id: str) -> str:
return f"https://bioguide.congress.gov/search/bio/{bioguide_id}"
def get_congress_gov_url(congress_num: int, legis_type: str, legis_num: int) -> str:
lt = CONGRESS_GOV_TYPE_MAP[legis_type]
return f"https://www.congress.gov/bill/{int(congress_num)}th-congress/{lt}/{int(legis_num)}"
def get_govtrack_url(congress_num: int, legis_type: str, legis_num: int) -> str:
return f"https://www.govtrack.us/congress/bills/{int(congress_num)}/{legis_type}{int(legis_num)}"
def load_bge_embeddings():
model_name = "BAAI/bge-small-en-v1.5"
model_kwargs = {"device": "cpu"}
encode_kwargs = {"normalize_embeddings": True}
emb_fn = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
query_instruction="Represent this question for searching relevant passages: ",
)
return emb_fn
def load_pinecone_vectorstore():
emb_fn = load_bge_embeddings()
vectorstore = PineconeVectorStore(
embedding=emb_fn,
text_key="text",
distance_strategy=DistanceStrategy.COSINE,
pinecone_api_key=st.secrets["pinecone_api_key"],
index_name=st.secrets["pinecone_index_name"],
)
return vectorstore
def write_outreach_links():
nomic_base_url = "https://atlas.nomic.ai/data/gabrielhyperdemocracy"
nomic_map_name = "us-congressional-legislation-s1024o256nomic"
nomic_url = f"{nomic_base_url}/{nomic_map_name}/map"
hf_url = "https://huggingface.co/hyperdemocracy"
pc_url = "https://www.pinecone.io/blog/serverless"
st.subheader(":brain: About [hyperdemocracy](https://hyperdemocracy.us)")
st.subheader(f":world_map: Visualize [nomic atlas]({nomic_url})")
st.subheader(f":hugging_face: Raw [huggingface datasets]({hf_url})")
st.subheader(f":evergreen_tree: Index [pinecone serverless]({pc_url})")
def group_docs(docs) -> list[tuple[str, list[Document]]]:
doc_grps = defaultdict(list)
# create legis_id groups
for doc in docs:
doc_grps[doc.metadata["legis_id"]].append(doc)
# sort docs in each group by start index
for legis_id in doc_grps.keys():
doc_grps[legis_id] = sorted(
doc_grps[legis_id],
key=lambda x: x.metadata["start_index"],
)
# sort groups by number of docs
doc_grps = sorted(
tuple(doc_grps.items()),
key=lambda x: -len(x[1]),
)
return doc_grps
def format_docs_v1(docs):
"""Simple double new line join"""
return "\n\n".join([doc.page_content for doc in docs])
def format_docs_v2(docs):
"""Format with snippet_num, legis_id, and title"""
def format_doc(idoc, doc):
return "snippet_num: {}\nlegis_id: {}\ntitle: {}\n... {} ...\n".format(
idoc,
doc.metadata["legis_id"],
doc.metadata["title"],
doc.page_content,
)
snips = []
for idoc, doc in enumerate(docs):
txt = format_doc(idoc, doc)
snips.append(txt)
return "\n===\n".join(snips)
def format_docs_v3(docs):
def format_header(doc):
return "legis_id: {}\ntitle: {}".format(
doc.metadata["legis_id"],
doc.metadata["title"],
)
def format_content(doc):
return "... {} ...\n".format(
doc.page_content,
)
snips = []
doc_grps = group_docs(docs)
for legis_id, doc_grp in doc_grps:
first_doc = doc_grp[0]
head = format_header(first_doc)
contents = []
for idoc, doc in enumerate(doc_grp):
txt = format_content(doc)
contents.append(txt)
snips.append("{}\n\n{}".format(head, "\n".join(contents)))
return "\n===\n".join(snips)
def format_docs_v4(docs):
"""JSON grouped"""
doc_grps = group_docs(docs)
out = []
for legis_id, doc_grp in doc_grps:
dd = {
"legis_id": doc_grp[0].metadata["legis_id"],
"title": doc_grp[0].metadata["title"],
"snippets": [doc.page_content for doc in doc_grp],
}
out.append(dd)
return json.dumps(out, indent=4)
DOC_FORMATTERS = {
"v1": format_docs_v1,
"v2": format_docs_v2,
"v3": format_docs_v3,
"v4": format_docs_v4,
}
def escape_markdown(text):
MD_SPECIAL_CHARS = r"\`*_{}[]()#+-.!$"
for char in MD_SPECIAL_CHARS:
text = text.replace(char, "\\" + char)
return text
def get_vectorstore_filter():
vs_filter = {}
if SS["filter_legis_id"] != "":
vs_filter["legis_id"] = SS["filter_legis_id"]
if SS["filter_bioguide_id"] != "":
vs_filter["sponsor_bioguide_id"] = SS["filter_bioguide_id"]
vs_filter = {**vs_filter, "congress_num": {"$in": SS["filter_congress_nums"]}}
vs_filter = {**vs_filter, "sponsor_party": {"$in": SS["filter_sponsor_parties"]}}
return vs_filter
def write_doc_grp(legis_id: str, doc_grp: list[Document]):
first_doc = doc_grp[0]
congress_gov_url = get_congress_gov_url(
first_doc.metadata["congress_num"],
first_doc.metadata["legis_type"],
first_doc.metadata["legis_num"],
)
congress_gov_link = f"[congress.gov]({congress_gov_url})"
gov_track_url = get_govtrack_url(
first_doc.metadata["congress_num"],
first_doc.metadata["legis_type"],
first_doc.metadata["legis_num"],
)
gov_track_link = f"[govtrack.us]({gov_track_url})"
ref = "{} chunks from {}\n\n{}\n\n{}\n\n[{} ({}) ]({})".format(
len(doc_grp),
first_doc.metadata["legis_id"],
first_doc.metadata["title"],
congress_gov_link,
first_doc.metadata["sponsor_full_name"],
first_doc.metadata["sponsor_bioguide_id"],
get_sponsor_url(first_doc.metadata["sponsor_bioguide_id"]),
)
doc_contents = [
"[start_index={}] ".format(int(doc.metadata["start_index"])) + doc.page_content
for doc in doc_grp
]
with st.expander(ref):
st.write(escape_markdown("\n\n...\n\n".join(doc_contents)))
def legis_id_to_link(legis_id: str) -> str:
congress_num, legis_type, legis_num = legis_id.split("-")
return get_congress_gov_url(congress_num, legis_type, legis_num)
def legis_id_match_to_link(matchobj):
mstring = matchobj.string[matchobj.start() : matchobj.end()]
url = legis_id_to_link(mstring)
link = f"[{mstring}]({url})"
return link
def replace_legis_ids_with_urls(text):
pattern = "11[345678]-[a-z]+-\d{1,5}"
rtext = re.sub(pattern, legis_id_match_to_link, text)
return rtext
def write_guide():
st.write(
"""
When you send a query to LegisQA, it will attempt to retrieve relevant content from the past six congresses ([113th-118th](https://en.wikipedia.org/wiki/List_of_United_States_Congresses)) covering 2013 to the present, pass it to a [large language model (LLM)](https://en.wikipedia.org/wiki/Large_language_model), and generate a response. This technique is known as Retrieval Augmented Generation (RAG). You can read [an academic paper](https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html) or [a high level summary](https://research.ibm.com/blog/retrieval-augmented-generation-RAG) to get more details. Once the response is generated, the retrieved content will be available for inspection with links to the bills and sponsors.
## Disclaimer
This is a research project. The RAG technique helps to ground the LLM response by providing context from a trusted source, but it does not guarantee a high quality response. We encourage you to play around, find questions that work and find questions that fail. There is a small monthly budget dedicated to the OpenAI endpoints. Once that is used up each month, queries will no longer work.
## Sidebar Config
Use the `Generative Config` to change LLM parameters.
Use the `Retrieval Config` to change the number of chunks retrieved from our congress corpus and to apply various filters to the content before it is retrieved (e.g. filter to a specific set of congresses). Use the `Prompt Config` to try out different document formatting and prompting strategies.
"""
)
def write_example_queries():
with st.expander("Example Queries"):
st.write(
"""
```
What are the themes around artificial intelligence?
```
```
Write a well cited 3 paragraph essay on food insecurity.
```
```
Create a table summarizing the major climate change ideas with columns legis_id, title, idea.
```
"""
)
##################
st.title(":classical_building: LegisQA :classical_building:")
with st.sidebar:
with st.container(border=True):
write_outreach_links()
st.checkbox("escape markdown in answer", key="response_escape_markdown")
st.checkbox("add legis urls in answer", value=True, key="response_add_legis_urls")
with st.expander("Generative Config"):
st.selectbox(label="model name", options=OPENAI_CHAT_MODELS, key="model_name")
st.slider(
"temperature", min_value=0.0, max_value=2.0, value=0.0, key="temperature"
)
st.slider("top_p", min_value=0.0, max_value=1.0, value=1.0, key="top_p")
with st.expander("Retrieval Config"):
st.slider(
"Number of chunks to retrieve",
min_value=1,
max_value=32,
value=8,
key="n_ret_docs",
)
st.text_input("Bill ID (e.g. 118-s-2293)", key="filter_legis_id")
st.text_input("Bioguide ID (e.g. R000595)", key="filter_bioguide_id")
st.multiselect(
"Congress Numbers",
CONGRESS_NUMBERS,
default=CONGRESS_NUMBERS,
key="filter_congress_nums",
)
st.multiselect(
"Sponsor Party",
SPONSOR_PARTIES,
default=SPONSOR_PARTIES,
key="filter_sponsor_parties",
)
with st.expander("Prompt Config"):
st.selectbox(
label="prompt version",
options=PROMPT_TEMPLATES.keys(),
index=3,
key="prompt_version",
)
st.text_area(
"prompt template",
PROMPT_TEMPLATES[SS["prompt_version"]],
height=300,
key="prompt_template",
)
llm = ChatOpenAI(
model_name=SS["model_name"],
temperature=SS["temperature"],
openai_api_key=st.secrets["openai_api_key"],
model_kwargs={"top_p": SS["top_p"], "seed": SEED},
)
vectorstore = load_pinecone_vectorstore()
format_docs = DOC_FORMATTERS[SS["prompt_version"]]
vs_filter = get_vectorstore_filter()
query_tab, guide_tab = st.tabs(["query", "guide"])
with guide_tab:
write_guide()
with query_tab:
write_example_queries()
with st.form("my_form"):
st.text_area("Enter query:", key="query")
query_submitted = st.form_submit_button("Submit")
if query_submitted:
retriever = vectorstore.as_retriever(
search_kwargs={"k": SS["n_ret_docs"], "filter": vs_filter},
)
prompt = PromptTemplate.from_template(SS["prompt_template"])
# # takes in a dict. adds context key with formatted docs
# rag_chain_from_docs = (
# RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
# | prompt
# | llm
# | StrOutputParser()
# )
# # takes in a query string.
# # passes to retriever and passthru
# # assign answer
# rag_chain_with_source = RunnableParallel(
# {"context": retriever, "question": RunnablePassthrough()}
# ).assign(answer=rag_chain_from_docs)
# takes in a dict. adds context key with formatted docs
rag_chain_from_docs = (
RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
| prompt
| llm
| StrOutputParser()
)
# takes in a query string.
# passes to retriever and passthru
# assign answer
rag_chain_with_source = RunnableParallel(
{"context": retriever, "question": RunnablePassthrough()}
).assign(answer=rag_chain_from_docs)
print(rag_chain_with_source)
with get_openai_callback() as cb:
SS["out"] = rag_chain_with_source.invoke(SS["query"])
SS["cb"] = cb
if "out" in SS:
out_display = SS["out"]["answer"]
if SS["response_escape_markdown"]:
out_display = escape_markdown(out_display)
if SS["response_add_legis_urls"]:
out_display = replace_legis_ids_with_urls(out_display)
with st.container(border=True):
st.write("Response")
st.info(out_display)
with st.container(border=True):
st.write("API Usage")
st.warning(SS["cb"])
with st.container(border=True):
doc_grps = group_docs(SS["out"]["context"])
st.write(
"Retrieved Chunks (note that you may need to 'right click' on links in the expanders to follow them)"
)
for legis_id, doc_grp in doc_grps:
write_doc_grp(legis_id, doc_grp)
# with st.expander("Debug doc format"):
# st.text_area("formatted docs", value=format_docs(SS["out"]["context"]), height=600)