gabrielaltay commited on
Commit
6bfad85
1 Parent(s): 80275c5
Files changed (1) hide show
  1. app.py +30 -5
app.py CHANGED
@@ -108,10 +108,11 @@ def write_outreach_links():
108
  nomic_map_name = "us-congressional-legislation-s1024o256nomic"
109
  nomic_url = f"{nomic_base_url}/{nomic_map_name}/map"
110
  hf_url = "https://huggingface.co/hyperdemocracy"
111
- st.subheader(":brain: Learn about [hyperdemocracy](https://hyperdemocracy.us)")
112
- st.subheader(f":world_map: Visualize with [nomic atlas]({nomic_url})")
113
- st.subheader(f":hugging_face: Explore the [huggingface datasets](hf_url)")
114
-
 
115
 
116
  def group_docs(docs) -> list[tuple[str, list[Document]]]:
117
  doc_grps = defaultdict(list)
@@ -217,6 +218,30 @@ def escape_markdown(text):
217
  return text
218
 
219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220
  with st.sidebar:
221
 
222
  with st.container(border=True):
@@ -269,7 +294,7 @@ vectorstore = load_pinecone_vectorstore()
269
  format_docs = DOC_FORMATTERS[SS["prompt_version"]]
270
 
271
  with st.form("my_form"):
272
- st.text_area("Enter question:", key="query")
273
  query_submitted = st.form_submit_button("Submit")
274
 
275
 
 
108
  nomic_map_name = "us-congressional-legislation-s1024o256nomic"
109
  nomic_url = f"{nomic_base_url}/{nomic_map_name}/map"
110
  hf_url = "https://huggingface.co/hyperdemocracy"
111
+ pc_url = "https://www.pinecone.io/blog/serverless"
112
+ st.subheader(":brain: About [hyperdemocracy](https://hyperdemocracy.us)")
113
+ st.subheader(f":world_map: Visualize [nomic atlas]({nomic_url})")
114
+ st.subheader(f":hugging_face: Raw [huggingface datasets](hf_url)")
115
+ st.subheader(f":evergreen_tree: Index [pinecone serverless](pc_url)")
116
 
117
  def group_docs(docs) -> list[tuple[str, list[Document]]]:
118
  doc_grps = defaultdict(list)
 
218
  return text
219
 
220
 
221
+ st.title(":classical_building: LegisQA :classical_building:")
222
+ st.header("Explore Congressional Legislation")
223
+ st.write(
224
+ """When you send a query to LegisQA, it will attempt to retrieve relevant content from the past six congresses ([113th-118th](https://en.wikipedia.org/wiki/List_of_United_States_Congresses)) covering 2013 to the present, pass it to a [large language model (LLM)](https://en.wikipedia.org/wiki/Large_language_model), and generate a response. This technique is known as Retrieval Augmented Generation (RAG). You can read [an academic paper](https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html) or [a high level summary](https://research.ibm.com/blog/retrieval-augmented-generation-RAG) to get more details. Once the response is generated, the retrieved content will be available for inspection with links to the bills and sponsors.
225
+ This technique helps to ground the LLM response by providing context from a trusted source, but it does not guarantee a high quality response. We encourage you to play around. Try different models. Find questions that work and find questions that fail.""")
226
+
227
+ st.header("Example Queries")
228
+
229
+ st.write("""
230
+ ```
231
+ What are the themes around artificial intelligence?
232
+ ```
233
+
234
+ ```
235
+ Write a well cited 3 paragraph essay on food insecurity.
236
+ ```
237
+
238
+ ```
239
+ Create a table summarizing the major climate change ideas with columns legis_id, title, idea.
240
+ ```
241
+ """
242
+ )
243
+
244
+
245
  with st.sidebar:
246
 
247
  with st.container(border=True):
 
294
  format_docs = DOC_FORMATTERS[SS["prompt_version"]]
295
 
296
  with st.form("my_form"):
297
+ st.text_area("Enter query:", key="query")
298
  query_submitted = st.form_submit_button("Submit")
299
 
300