Spaces:
Sleeping
Sleeping
gabrielaltay
commited on
Commit
•
8a92b0a
1
Parent(s):
ee3f9c2
nvidia nim update
Browse files- app.py +30 -7
- requirements.txt +9 -8
app.py
CHANGED
@@ -28,6 +28,7 @@ from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
|
28 |
from langchain_community.vectorstores.utils import DistanceStrategy
|
29 |
from langchain_openai import ChatOpenAI
|
30 |
from langchain_anthropic import ChatAnthropic
|
|
|
31 |
from langchain_pinecone import PineconeVectorStore
|
32 |
from pinecone import Pinecone
|
33 |
import streamlit as st
|
@@ -57,7 +58,6 @@ CONGRESS_GOV_TYPE_MAP = {
|
|
57 |
}
|
58 |
OPENAI_CHAT_MODELS = [
|
59 |
"gpt-3.5-turbo-0125",
|
60 |
-
# "gpt-4-0125-preview",
|
61 |
"gpt-4o",
|
62 |
]
|
63 |
ANTHROPIC_CHAT_MODELS = [
|
@@ -65,7 +65,20 @@ ANTHROPIC_CHAT_MODELS = [
|
|
65 |
"claude-3-sonnet-20240229",
|
66 |
"claude-3-haiku-20240307",
|
67 |
]
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
def get_sponsor_url(bioguide_id: str) -> str:
|
@@ -278,9 +291,10 @@ def render_sidebar():
|
|
278 |
st.checkbox("add legis urls in answer", value=True, key="response_add_legis_urls")
|
279 |
|
280 |
with st.expander("Generative Config"):
|
281 |
-
st.selectbox(label="
|
|
|
282 |
st.slider(
|
283 |
-
"temperature", min_value=0.0, max_value=2.0, value=0.
|
284 |
)
|
285 |
st.slider(
|
286 |
"max_output_tokens", min_value=512, max_value=1024, key="max_output_tokens"
|
@@ -315,7 +329,7 @@ def render_query_rag_tab():
|
|
315 |
|
316 |
render_example_queries()
|
317 |
|
318 |
-
QUERY_TEMPLATE = """Use the following excerpts from US congressional legislation to respond to the user's query. The excerpts are formatted as a JSON list. Each JSON object has "legis_id", "title", "introduced_date", "sponsor", and "snippets" keys. If a snippet is useful in writing part of your response, then cite the "legis_id", "title", "introduced_date", and "sponsor" in the response. If you don't know how to respond, just tell the user.
|
319 |
|
320 |
---
|
321 |
|
@@ -329,7 +343,6 @@ Query: {query}"""
|
|
329 |
|
330 |
prompt = ChatPromptTemplate.from_messages(
|
331 |
[
|
332 |
-
("system", "You are an expert legislative analyst."),
|
333 |
("human", QUERY_TEMPLATE),
|
334 |
]
|
335 |
)
|
@@ -398,7 +411,8 @@ def render_query_agent_tab():
|
|
398 |
|
399 |
from langchain_community.tools import WikipediaQueryRun
|
400 |
from langchain_community.utilities import WikipediaAPIWrapper
|
401 |
-
from langchain.agents import load_tools
|
|
|
402 |
from langchain.agents import create_react_agent
|
403 |
from langchain import hub
|
404 |
|
@@ -497,6 +511,15 @@ elif SS["model_name"] in ANTHROPIC_CHAT_MODELS:
|
|
497 |
top_p=SS["top_p"],
|
498 |
max_tokens_to_sample=SS["max_output_tokens"],
|
499 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
else:
|
501 |
raise ValueError()
|
502 |
|
|
|
28 |
from langchain_community.vectorstores.utils import DistanceStrategy
|
29 |
from langchain_openai import ChatOpenAI
|
30 |
from langchain_anthropic import ChatAnthropic
|
31 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
32 |
from langchain_pinecone import PineconeVectorStore
|
33 |
from pinecone import Pinecone
|
34 |
import streamlit as st
|
|
|
58 |
}
|
59 |
OPENAI_CHAT_MODELS = [
|
60 |
"gpt-3.5-turbo-0125",
|
|
|
61 |
"gpt-4o",
|
62 |
]
|
63 |
ANTHROPIC_CHAT_MODELS = [
|
|
|
65 |
"claude-3-sonnet-20240229",
|
66 |
"claude-3-haiku-20240307",
|
67 |
]
|
68 |
+
NVIDIA_NIM_CHAT_MODELS = [
|
69 |
+
"microsoft/phi-3-mini-128k-instruct",
|
70 |
+
"google/gemma-7b",
|
71 |
+
"meta/llama3-8b-instruct",
|
72 |
+
"meta/llama3-70b-instruct",
|
73 |
+
"mistralai/mixtral-8x22b-instruct-v0.1",
|
74 |
+
]
|
75 |
+
CHAT_MODELS = OPENAI_CHAT_MODELS + ANTHROPIC_CHAT_MODELS + NVIDIA_NIM_CHAT_MODELS
|
76 |
+
|
77 |
+
PROVIDER_MODELS = {
|
78 |
+
"OpenAI": OPENAI_CHAT_MODELS,
|
79 |
+
"Anthropic": ANTHROPIC_CHAT_MODELS,
|
80 |
+
"Nvidia NIM": NVIDIA_NIM_CHAT_MODELS,
|
81 |
+
}
|
82 |
|
83 |
|
84 |
def get_sponsor_url(bioguide_id: str) -> str:
|
|
|
291 |
st.checkbox("add legis urls in answer", value=True, key="response_add_legis_urls")
|
292 |
|
293 |
with st.expander("Generative Config"):
|
294 |
+
st.selectbox(label="provider", options=PROVIDER_MODELS.keys(), key="provider")
|
295 |
+
st.selectbox(label="model name", options=PROVIDER_MODELS[SS["provider"]], key="model_name")
|
296 |
st.slider(
|
297 |
+
"temperature", min_value=0.0, max_value=2.0, value=0.01, key="temperature"
|
298 |
)
|
299 |
st.slider(
|
300 |
"max_output_tokens", min_value=512, max_value=1024, key="max_output_tokens"
|
|
|
329 |
|
330 |
render_example_queries()
|
331 |
|
332 |
+
QUERY_TEMPLATE = """You are an expert legislative analyst. Use the following excerpts from US congressional legislation to respond to the user's query. The excerpts are formatted as a JSON list. Each JSON object has "legis_id", "title", "introduced_date", "sponsor", and "snippets" keys. If a snippet is useful in writing part of your response, then cite the "legis_id", "title", "introduced_date", and "sponsor" in the response. If you don't know how to respond, just tell the user.
|
333 |
|
334 |
---
|
335 |
|
|
|
343 |
|
344 |
prompt = ChatPromptTemplate.from_messages(
|
345 |
[
|
|
|
346 |
("human", QUERY_TEMPLATE),
|
347 |
]
|
348 |
)
|
|
|
411 |
|
412 |
from langchain_community.tools import WikipediaQueryRun
|
413 |
from langchain_community.utilities import WikipediaAPIWrapper
|
414 |
+
# from langchain.agents import load_tools
|
415 |
+
from langchain_community.agent_toolkits.load_tools import load_tools
|
416 |
from langchain.agents import create_react_agent
|
417 |
from langchain import hub
|
418 |
|
|
|
511 |
top_p=SS["top_p"],
|
512 |
max_tokens_to_sample=SS["max_output_tokens"],
|
513 |
)
|
514 |
+
elif SS["model_name"] in NVIDIA_NIM_CHAT_MODELS:
|
515 |
+
llm = ChatNVIDIA(
|
516 |
+
model=SS["model_name"],
|
517 |
+
temperature=SS["temperature"],
|
518 |
+
max_tokens=SS["max_output_tokens"],
|
519 |
+
top_p=SS["top_p"],
|
520 |
+
seed=SEED,
|
521 |
+
nvidia_api_key=st.secrets["nvidia_api_key"],
|
522 |
+
)
|
523 |
else:
|
524 |
raise ValueError()
|
525 |
|
requirements.txt
CHANGED
@@ -41,15 +41,16 @@ jsonpatch==1.33
|
|
41 |
jsonpointer==2.4
|
42 |
jsonschema==4.21.1
|
43 |
jsonschema-specifications==2023.12.1
|
44 |
-
langchain==0.
|
45 |
langchain-anthropic==0.1.1
|
46 |
-
langchain-community==0.
|
47 |
-
langchain-core==0.
|
48 |
-
langchain-
|
|
|
49 |
langchain-pinecone==0.0.3
|
50 |
-
langchain-text-splitters==0.
|
51 |
langchainhub==0.1.15
|
52 |
-
langsmith==0.1.
|
53 |
markdown-it-py==3.0.0
|
54 |
MarkupSafe==2.1.5
|
55 |
marshmallow==3.20.2
|
@@ -60,7 +61,7 @@ multidict==6.0.5
|
|
60 |
mypy-extensions==1.0.0
|
61 |
networkx==3.2.1
|
62 |
numpy==1.26.4
|
63 |
-
openai==1.
|
64 |
orjson==3.10.0
|
65 |
packaging==23.2
|
66 |
pandas==2.2.1
|
@@ -102,7 +103,7 @@ streamlit==1.31.1
|
|
102 |
sympy==1.12
|
103 |
tenacity==8.2.3
|
104 |
threadpoolctl==3.3.0
|
105 |
-
tiktoken==0.
|
106 |
tokenizers==0.15.2
|
107 |
toml==0.10.2
|
108 |
tomli==2.0.1
|
|
|
41 |
jsonpointer==2.4
|
42 |
jsonschema==4.21.1
|
43 |
jsonschema-specifications==2023.12.1
|
44 |
+
langchain==0.2.5
|
45 |
langchain-anthropic==0.1.1
|
46 |
+
langchain-community==0.2.5
|
47 |
+
langchain-core==0.2.7
|
48 |
+
langchain-nvidia-ai-endpoints==0.1.2
|
49 |
+
langchain-openai==0.1.8
|
50 |
langchain-pinecone==0.0.3
|
51 |
+
langchain-text-splitters==0.2.1
|
52 |
langchainhub==0.1.15
|
53 |
+
langsmith==0.1.77
|
54 |
markdown-it-py==3.0.0
|
55 |
MarkupSafe==2.1.5
|
56 |
marshmallow==3.20.2
|
|
|
61 |
mypy-extensions==1.0.0
|
62 |
networkx==3.2.1
|
63 |
numpy==1.26.4
|
64 |
+
openai==1.34.0
|
65 |
orjson==3.10.0
|
66 |
packaging==23.2
|
67 |
pandas==2.2.1
|
|
|
103 |
sympy==1.12
|
104 |
tenacity==8.2.3
|
105 |
threadpoolctl==3.3.0
|
106 |
+
tiktoken==0.7.0
|
107 |
tokenizers==0.15.2
|
108 |
toml==0.10.2
|
109 |
tomli==2.0.1
|