#!/usr/bin/env python from __future__ import annotations import argparse import functools import os import pathlib import sys import tarfile from typing import Callable import cv2 import gradio as gr import huggingface_hub import numpy as np import PIL.Image import torch import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as T from scipy.spatial.transform import Rotation sys.path.insert(0, 'face_detection') sys.path.insert(0, 'deep-head-pose/code') from hopenet import Hopenet from ibug.face_detection import RetinaFacePredictor TITLE = 'natanielruiz/deep-head-pose' DESCRIPTION = 'This is a demo for https://github.com/natanielruiz/deep-head-pose.' ARTICLE = None TOKEN = os.environ['TOKEN'] def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument('--device', type=str, default='cpu') parser.add_argument('--theme', type=str) parser.add_argument('--live', action='store_true') parser.add_argument('--share', action='store_true') parser.add_argument('--port', type=int) parser.add_argument('--disable-queue', dest='enable_queue', action='store_false') parser.add_argument('--allow-flagging', type=str, default='never') parser.add_argument('--allow-screenshot', action='store_true') return parser.parse_args() def load_sample_images() -> list[pathlib.Path]: image_dir = pathlib.Path('images') if not image_dir.exists(): image_dir.mkdir() dataset_repo = 'hysts/input-images' filenames = ['001.tar'] for name in filenames: path = huggingface_hub.hf_hub_download(dataset_repo, name, repo_type='dataset', use_auth_token=TOKEN) with tarfile.open(path) as f: f.extractall(image_dir.as_posix()) return sorted(image_dir.rglob('*.jpg')) def load_model(model_name: str, device: torch.device) -> nn.Module: path = huggingface_hub.hf_hub_download('hysts/Hopenet', f'models/{model_name}.pkl', use_auth_token=TOKEN) state_dict = torch.load(path, map_location='cpu') model = Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) model.load_state_dict(state_dict) model.to(device) model.eval() return model def create_transform() -> Callable: transform = T.Compose([ T.Resize(224), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) return transform def crop_face(image: np.ndarray, box: tuple[int, int, int, int]) -> np.ndarray: x0, y0, x1, y1 = box w = x1 - x0 h = y1 - y0 x0 -= 2 * w // 4 x1 += 2 * w // 4 y0 -= 3 * h // 4 y1 += h // 4 x0 = max(x0, 0) y0 = max(y0, 0) x1 = min(x1, image.shape[1]) y1 = min(y1, image.shape[0]) image = image[y0:y1, x0:x1] return image @torch.inference_mode() def predict(image: np.ndarray, transform: Callable, model: nn.Module, device: torch.device) -> np.ndarray: indices = torch.arange(66).float().to(device) image = PIL.Image.fromarray(image) data = transform(image) data = data.to(device) # the output of the model is a tuple of 3 tensors (yaw, pitch, roll) # the shape of each tensor is (1, 66) out = model(data[None, ...]) out = torch.stack(out, dim=1) # shape: (1, 3, 66) out = F.softmax(out, dim=2) out = (out * indices).sum(dim=2) * 3 - 99 out = out.cpu().numpy()[0] return out def draw_axis(image: np.ndarray, pose: np.ndarray, origin: np.ndarray, length: int) -> None: # (yaw, pitch, roll) -> (roll, yaw, pitch) pose = pose[[2, 0, 1]] pose *= np.array([1, -1, 1]) rot = Rotation.from_euler('zyx', pose, degrees=True) vectors = rot.as_matrix().T[:, :2] # shape: (3, 2) pts = np.round(vectors * length + origin).astype(int) cv2.line(image, tuple(origin), tuple(pts[0]), (0, 0, 255), 3) cv2.line(image, tuple(origin), tuple(pts[1]), (0, 255, 0), 3) cv2.line(image, tuple(origin), tuple(pts[2]), (255, 0, 0), 2) def run(image: np.ndarray, model_name: str, face_detector: RetinaFacePredictor, models: dict[str, nn.Module], transform: Callable, device: torch.device) -> np.ndarray: model = models[model_name] # RGB -> BGR det_faces = face_detector(image[:, :, ::-1], rgb=False) res = image[:, :, ::-1].copy() for det_face in det_faces: box = np.round(det_face[:4]).astype(int) # RGB face_image = crop_face(image, box.tolist()) # (yaw, pitch, roll) angles = predict(face_image, transform, model, device) center = (box[:2] + box[2:]) // 2 length = (box[3] - box[1]) // 2 draw_axis(res, angles, center, length) return res[:, :, ::-1] def main(): gr.close_all() args = parse_args() device = torch.device(args.device) face_detector = RetinaFacePredictor( threshold=0.8, device=device, model=RetinaFacePredictor.get_model('mobilenet0.25')) model_names = [ 'hopenet_alpha1', 'hopenet_alpha2', 'hopenet_robust_alpha1', ] models = {name: load_model(name, device) for name in model_names} transform = create_transform() func = functools.partial(run, face_detector=face_detector, models=models, transform=transform, device=device) func = functools.update_wrapper(func, run) image_paths = load_sample_images() examples = [[path.as_posix(), model_names[0]] for path in image_paths] gr.Interface( func, [ gr.inputs.Image(type='numpy', label='Input'), gr.inputs.Radio(model_names, type='value', default=model_names[0], label='Model'), ], gr.outputs.Image(type='numpy', label='Output'), examples=examples, title=TITLE, description=DESCRIPTION, article=ARTICLE, theme=args.theme, allow_screenshot=args.allow_screenshot, allow_flagging=args.allow_flagging, live=args.live, ).launch( enable_queue=args.enable_queue, server_port=args.port, share=args.share, ) if __name__ == '__main__': main()