Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
import os | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import spaces | |
import torch | |
from diffusers import AutoencoderKL, DiffusionPipeline | |
DESCRIPTION = "# SDXL" | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipe = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
vae=vae, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16", | |
).to(device) | |
refiner = DiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-refiner-1.0", | |
vae=vae, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16", | |
).to(device) | |
def get_seed(randomize_seed: bool, seed: int) -> int: | |
"""Determine and return the random seed to use for model generation or sampling. | |
- MAX_SEED is the maximum value for a 32-bit integer (np.iinfo(np.int32).max). | |
- This function is typically used to ensure reproducibility or to introduce randomness in model generation. | |
- The random seed affects the stochastic processes in downstream model inference or sampling. | |
Args: | |
randomize_seed (bool): If True, a random seed (an integer in [0, MAX_SEED)) is generated using NumPy's default random number generator. If False, the provided seed argument is returned as-is. | |
seed (int): The seed value to use if randomize_seed is False. | |
Returns: | |
int: The selected seed value. If randomize_seed is True, a randomly generated integer; otherwise, the value of the seed argument. | |
""" | |
rng = np.random.default_rng() | |
return int(rng.integers(0, MAX_SEED)) if randomize_seed else seed | |
def generate( | |
prompt: str, | |
negative_prompt: str = "", | |
prompt_2: str = "", | |
negative_prompt_2: str = "", | |
use_negative_prompt: bool = False, | |
use_prompt_2: bool = False, | |
use_negative_prompt_2: bool = False, | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale_base: float = 5.0, | |
guidance_scale_refiner: float = 5.0, | |
num_inference_steps_base: int = 25, | |
num_inference_steps_refiner: int = 25, | |
apply_refiner: bool = False, | |
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008 | |
) -> PIL.Image.Image: | |
"""Generates an image from a text prompt using the SDXL (Stable Diffusion XL) model. | |
This function allows fine-grained control over image generation through prompts, | |
negative prompts, and optional refinement stages. | |
Note: | |
All prompt-related inputs (e.g., `prompt`, `negative_prompt`, `prompt_2`, and `negative_prompt_2`) | |
must be written in English for proper model performance. | |
Args: | |
prompt (str): Main text prompt used to guide image generation. | |
negative_prompt (str, optional): Text specifying elements to exclude from the image. | |
prompt_2 (str, optional): Secondary prompt for additional guidance. Used only if `use_prompt_2` is True. | |
negative_prompt_2 (str, optional): Secondary negative prompt. Used only if `use_negative_prompt_2` is True. | |
use_negative_prompt (bool, optional): Whether to apply `negative_prompt` during generation. | |
use_prompt_2 (bool, optional): Whether to apply `prompt_2` during generation. | |
use_negative_prompt_2 (bool, optional): Whether to apply `negative_prompt_2` during generation. | |
seed (int, optional): Seed for random number generation. Use 0 to generate a random seed. | |
width (int, optional): Width of the output image in pixels. | |
height (int, optional): Height of the output image in pixels. | |
guidance_scale_base (float, optional): Guidance scale for the base model. Higher values follow the prompt more closely. | |
guidance_scale_refiner (float, optional): Guidance scale for the refiner model. | |
num_inference_steps_base (int, optional): Number of inference steps for the base model. | |
num_inference_steps_refiner (int, optional): Number of inference steps for the refiner model. | |
apply_refiner (bool, optional): Whether to apply the refiner stage after the base image is generated. | |
progress (gr.Progress, optional): Gradio progress object to show progress during generation. | |
Returns: | |
PIL.Image.Image: The generated image as a PIL Image object. | |
""" | |
generator = torch.Generator().manual_seed(seed) | |
if not use_negative_prompt: | |
negative_prompt = None # type: ignore | |
if not use_prompt_2: | |
prompt_2 = None # type: ignore | |
if not use_negative_prompt_2: | |
negative_prompt_2 = None # type: ignore | |
if not apply_refiner: | |
return pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
output_type="pil", | |
).images[0] | |
latents = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale_base, | |
num_inference_steps=num_inference_steps_base, | |
generator=generator, | |
output_type="latent", | |
).images | |
images = refiner( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
prompt_2=prompt_2, | |
negative_prompt_2=negative_prompt_2, | |
guidance_scale=guidance_scale_refiner, | |
num_inference_steps=num_inference_steps_refiner, | |
image=latents, | |
generator=generator, | |
).images | |
return images[0] | |
examples = [ | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"An astronaut riding a green horse", | |
] | |
with gr.Blocks(css_paths="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
submit_btn=True, | |
) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) | |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False) | |
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False) | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
value="", | |
) | |
prompt_2 = gr.Textbox( | |
label="Prompt 2", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
visible=False, | |
value="", | |
) | |
negative_prompt_2 = gr.Textbox( | |
label="Negative prompt 2", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
value="", | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
apply_refiner = gr.Checkbox(label="Apply refiner", value=True) | |
with gr.Row(): | |
guidance_scale_base = gr.Slider( | |
label="Guidance scale for base", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps_base = gr.Slider( | |
label="Number of inference steps for base", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
with gr.Row() as refiner_params: | |
guidance_scale_refiner = gr.Slider( | |
label="Guidance scale for refiner", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=5.0, | |
) | |
num_inference_steps_refiner = gr.Slider( | |
label="Number of inference steps for refiner", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=25, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=result, | |
fn=generate, | |
) | |
use_negative_prompt.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt, | |
outputs=negative_prompt, | |
queue=False, | |
api_name=False, | |
) | |
use_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_prompt_2, | |
outputs=prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
use_negative_prompt_2.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=use_negative_prompt_2, | |
outputs=negative_prompt_2, | |
queue=False, | |
api_name=False, | |
) | |
apply_refiner.change( | |
fn=lambda x: gr.update(visible=x), | |
inputs=apply_refiner, | |
outputs=refiner_params, | |
queue=False, | |
api_name=False, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
negative_prompt.submit, | |
prompt_2.submit, | |
negative_prompt_2.submit, | |
], | |
fn=get_seed, | |
inputs=[randomize_seed, seed], | |
outputs=seed, | |
queue=False, | |
).then( | |
fn=generate, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
prompt_2, | |
negative_prompt_2, | |
use_negative_prompt, | |
use_prompt_2, | |
use_negative_prompt_2, | |
seed, | |
width, | |
height, | |
guidance_scale_base, | |
guidance_scale_refiner, | |
num_inference_steps_base, | |
num_inference_steps_refiner, | |
apply_refiner, | |
], | |
outputs=result, | |
api_name="predict", | |
) | |
if __name__ == "__main__": | |
demo.launch(mcp_server=True) | |