SDXL / app.py
hysts's picture
hysts HF Staff
Update
2c007cb
raw
history blame
10.9 kB
#!/usr/bin/env python
import os
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import AutoencoderKL, DiffusionPipeline
DESCRIPTION = "# SDXL"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
).to(device)
refiner = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
vae=vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
).to(device)
def get_seed(randomize_seed: bool, seed: int) -> int:
"""Determine and return the random seed to use for model generation or sampling.
- MAX_SEED is the maximum value for a 32-bit integer (np.iinfo(np.int32).max).
- This function is typically used to ensure reproducibility or to introduce randomness in model generation.
- The random seed affects the stochastic processes in downstream model inference or sampling.
Args:
randomize_seed (bool): If True, a random seed (an integer in [0, MAX_SEED)) is generated using NumPy's default random number generator. If False, the provided seed argument is returned as-is.
seed (int): The seed value to use if randomize_seed is False.
Returns:
int: The selected seed value. If randomize_seed is True, a randomly generated integer; otherwise, the value of the seed argument.
"""
rng = np.random.default_rng()
return int(rng.integers(0, MAX_SEED)) if randomize_seed else seed
@spaces.GPU
def generate(
prompt: str,
negative_prompt: str = "",
prompt_2: str = "",
negative_prompt_2: str = "",
use_negative_prompt: bool = False,
use_prompt_2: bool = False,
use_negative_prompt_2: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
guidance_scale_refiner: float = 5.0,
num_inference_steps_base: int = 25,
num_inference_steps_refiner: int = 25,
apply_refiner: bool = False,
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
) -> PIL.Image.Image:
"""Generates an image from a text prompt using the SDXL (Stable Diffusion XL) model.
This function allows fine-grained control over image generation through prompts,
negative prompts, and optional refinement stages.
Note:
All prompt-related inputs (e.g., `prompt`, `negative_prompt`, `prompt_2`, and `negative_prompt_2`)
must be written in English for proper model performance.
Args:
prompt (str): Main text prompt used to guide image generation.
negative_prompt (str, optional): Text specifying elements to exclude from the image.
prompt_2 (str, optional): Secondary prompt for additional guidance. Used only if `use_prompt_2` is True.
negative_prompt_2 (str, optional): Secondary negative prompt. Used only if `use_negative_prompt_2` is True.
use_negative_prompt (bool, optional): Whether to apply `negative_prompt` during generation.
use_prompt_2 (bool, optional): Whether to apply `prompt_2` during generation.
use_negative_prompt_2 (bool, optional): Whether to apply `negative_prompt_2` during generation.
seed (int, optional): Seed for random number generation. Use 0 to generate a random seed.
width (int, optional): Width of the output image in pixels.
height (int, optional): Height of the output image in pixels.
guidance_scale_base (float, optional): Guidance scale for the base model. Higher values follow the prompt more closely.
guidance_scale_refiner (float, optional): Guidance scale for the refiner model.
num_inference_steps_base (int, optional): Number of inference steps for the base model.
num_inference_steps_refiner (int, optional): Number of inference steps for the refiner model.
apply_refiner (bool, optional): Whether to apply the refiner stage after the base image is generated.
progress (gr.Progress, optional): Gradio progress object to show progress during generation.
Returns:
PIL.Image.Image: The generated image as a PIL Image object.
"""
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
if not use_prompt_2:
prompt_2 = None # type: ignore
if not use_negative_prompt_2:
negative_prompt_2 = None # type: ignore
if not apply_refiner:
return pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
output_type="pil",
).images[0]
latents = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
output_type="latent",
).images
images = refiner(
prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
guidance_scale=guidance_scale_refiner,
num_inference_steps=num_inference_steps_refiner,
image=latents,
generator=generator,
).images
return images[0]
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
]
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
submit_btn=True,
)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
value="",
)
prompt_2 = gr.Textbox(
label="Prompt 2",
max_lines=1,
placeholder="Enter your prompt",
visible=False,
value="",
)
negative_prompt_2 = gr.Textbox(
label="Negative prompt 2",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
value="",
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
apply_refiner = gr.Checkbox(label="Apply refiner", value=True)
with gr.Row():
guidance_scale_base = gr.Slider(
label="Guidance scale for base",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_base = gr.Slider(
label="Number of inference steps for base",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row() as refiner_params:
guidance_scale_refiner = gr.Slider(
label="Guidance scale for refiner",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
num_inference_steps_refiner = gr.Slider(
label="Number of inference steps for refiner",
minimum=10,
maximum=100,
step=1,
value=25,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=result,
fn=generate,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt_2,
queue=False,
api_name=False,
)
use_negative_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt_2,
outputs=negative_prompt_2,
queue=False,
api_name=False,
)
apply_refiner.change(
fn=lambda x: gr.update(visible=x),
inputs=apply_refiner,
outputs=refiner_params,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
prompt_2.submit,
negative_prompt_2.submit,
],
fn=get_seed,
inputs=[randomize_seed, seed],
outputs=seed,
queue=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
prompt_2,
negative_prompt_2,
use_negative_prompt,
use_prompt_2,
use_negative_prompt_2,
seed,
width,
height,
guidance_scale_base,
guidance_scale_refiner,
num_inference_steps_base,
num_inference_steps_refiner,
apply_refiner,
],
outputs=result,
api_name="predict",
)
if __name__ == "__main__":
demo.launch(mcp_server=True)