Spaces:
Running
on
Zero
Running
on
Zero
Update
Browse files
app.py
CHANGED
@@ -11,47 +11,29 @@ import torch
|
|
11 |
from diffusers import AutoencoderKL, DiffusionPipeline
|
12 |
|
13 |
DESCRIPTION = "# SDXL"
|
14 |
-
if not torch.cuda.is_available():
|
15 |
-
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
16 |
|
17 |
MAX_SEED = np.iinfo(np.int32).max
|
18 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
19 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
20 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
21 |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
22 |
|
23 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
vae=vae,
|
29 |
torch_dtype=torch.float16,
|
30 |
use_safetensors=True,
|
31 |
variant="fp16",
|
32 |
-
)
|
33 |
-
if ENABLE_REFINER:
|
34 |
-
refiner = DiffusionPipeline.from_pretrained(
|
35 |
-
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
36 |
-
vae=vae,
|
37 |
-
torch_dtype=torch.float16,
|
38 |
-
use_safetensors=True,
|
39 |
-
variant="fp16",
|
40 |
-
)
|
41 |
-
|
42 |
-
if ENABLE_CPU_OFFLOAD:
|
43 |
-
pipe.enable_model_cpu_offload()
|
44 |
-
if ENABLE_REFINER:
|
45 |
-
refiner.enable_model_cpu_offload()
|
46 |
-
else:
|
47 |
-
pipe.to(device)
|
48 |
-
if ENABLE_REFINER:
|
49 |
-
refiner.to(device)
|
50 |
-
|
51 |
-
if USE_TORCH_COMPILE:
|
52 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
53 |
-
if ENABLE_REFINER:
|
54 |
-
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
|
55 |
|
56 |
|
57 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
@@ -136,7 +118,7 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
136 |
|
137 |
with gr.Group():
|
138 |
with gr.Row():
|
139 |
-
prompt = gr.
|
140 |
label="Prompt",
|
141 |
show_label=False,
|
142 |
max_lines=1,
|
@@ -149,23 +131,26 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
149 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
150 |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
151 |
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
|
152 |
-
negative_prompt = gr.
|
153 |
label="Negative prompt",
|
154 |
max_lines=1,
|
155 |
placeholder="Enter a negative prompt",
|
156 |
visible=False,
|
|
|
157 |
)
|
158 |
-
prompt_2 = gr.
|
159 |
label="Prompt 2",
|
160 |
max_lines=1,
|
161 |
placeholder="Enter your prompt",
|
162 |
visible=False,
|
|
|
163 |
)
|
164 |
-
negative_prompt_2 = gr.
|
165 |
label="Negative prompt 2",
|
166 |
max_lines=1,
|
167 |
placeholder="Enter a negative prompt",
|
168 |
visible=False,
|
|
|
169 |
)
|
170 |
|
171 |
seed = gr.Slider(
|
@@ -291,8 +276,8 @@ with gr.Blocks(css_paths="style.css") as demo:
|
|
291 |
apply_refiner,
|
292 |
],
|
293 |
outputs=result,
|
294 |
-
api_name="
|
295 |
)
|
296 |
|
297 |
if __name__ == "__main__":
|
298 |
-
demo.
|
|
|
11 |
from diffusers import AutoencoderKL, DiffusionPipeline
|
12 |
|
13 |
DESCRIPTION = "# SDXL"
|
|
|
|
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
|
|
|
|
17 |
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "1") == "1"
|
18 |
|
19 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
20 |
+
|
21 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
22 |
+
pipe = DiffusionPipeline.from_pretrained(
|
23 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
24 |
+
vae=vae,
|
25 |
+
torch_dtype=torch.float16,
|
26 |
+
use_safetensors=True,
|
27 |
+
variant="fp16",
|
28 |
+
).to(device)
|
29 |
+
if ENABLE_REFINER:
|
30 |
+
refiner = DiffusionPipeline.from_pretrained(
|
31 |
+
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
32 |
vae=vae,
|
33 |
torch_dtype=torch.float16,
|
34 |
use_safetensors=True,
|
35 |
variant="fp16",
|
36 |
+
).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
|
118 |
|
119 |
with gr.Group():
|
120 |
with gr.Row():
|
121 |
+
prompt = gr.Textbox(
|
122 |
label="Prompt",
|
123 |
show_label=False,
|
124 |
max_lines=1,
|
|
|
131 |
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
132 |
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
133 |
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
|
134 |
+
negative_prompt = gr.Textbox(
|
135 |
label="Negative prompt",
|
136 |
max_lines=1,
|
137 |
placeholder="Enter a negative prompt",
|
138 |
visible=False,
|
139 |
+
value="",
|
140 |
)
|
141 |
+
prompt_2 = gr.Textbox(
|
142 |
label="Prompt 2",
|
143 |
max_lines=1,
|
144 |
placeholder="Enter your prompt",
|
145 |
visible=False,
|
146 |
+
value="",
|
147 |
)
|
148 |
+
negative_prompt_2 = gr.Textbox(
|
149 |
label="Negative prompt 2",
|
150 |
max_lines=1,
|
151 |
placeholder="Enter a negative prompt",
|
152 |
visible=False,
|
153 |
+
value="",
|
154 |
)
|
155 |
|
156 |
seed = gr.Slider(
|
|
|
276 |
apply_refiner,
|
277 |
],
|
278 |
outputs=result,
|
279 |
+
api_name="predict",
|
280 |
)
|
281 |
|
282 |
if __name__ == "__main__":
|
283 |
+
demo.launch()
|
style.css
CHANGED
@@ -3,13 +3,6 @@ h1 {
|
|
3 |
display: block;
|
4 |
}
|
5 |
|
6 |
-
#duplicate-button {
|
7 |
-
margin: auto;
|
8 |
-
color: #fff;
|
9 |
-
background: #1565c0;
|
10 |
-
border-radius: 100vh;
|
11 |
-
}
|
12 |
-
|
13 |
.contain {
|
14 |
max-width: 730px;
|
15 |
margin: auto;
|
|
|
3 |
display: block;
|
4 |
}
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
.contain {
|
7 |
max-width: 730px;
|
8 |
margin: auto;
|