File size: 4,679 Bytes
20ed832 8f39d59 20ed832 9250fe1 8f39d59 e5605f3 8f39d59 e5605f3 9250fe1 20ed832 5d660ba 20ed832 9250fe1 20ed832 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import sys
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
if os.environ.get('SYSTEM') == 'spaces':
os.system("sed -i '14,21d' StyleSwin/op/fused_act.py")
os.system("sed -i '12,19d' StyleSwin/op/upfirdn2d.py")
sys.path.insert(0, 'StyleSwin')
from models.generator import Generator
TITLE = 'microsoft/StyleSwin'
DESCRIPTION = '''This is an unofficial demo for https://github.com/microsoft/StyleSwin.
Expected execution time on Hugging Face Spaces: 3s (for 256x256 images), 7s (for 1024x1024 images)
'''
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/StyleSwin/resolve/main/samples'
ARTICLE = f'''## Generated images
### CelebA-HQ
- size: 1024x1024
- seed: 0-99

### FFHQ
- size: 1024x1024
- seed: 0-99

### LSUN Church
- size: 256x256
- seed: 0-99

<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.styleswin" alt="visitor badge"/></center>
'''
TOKEN = os.environ['TOKEN']
MODEL_REPO = 'hysts/StyleSwin'
MODEL_NAMES = [
'CelebAHQ_256',
'FFHQ_256',
'LSUNChurch_256',
'CelebAHQ_1024',
'FFHQ_1024',
]
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
return parser.parse_args()
def load_model(model_name: str, device: torch.device) -> nn.Module:
size = int(model_name.split('_')[1])
channel_multiplier = 1 if size == 1024 else 2
model = Generator(size,
style_dim=512,
n_mlp=8,
channel_multiplier=channel_multiplier)
ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO,
f'models/{model_name}.pt',
use_auth_token=TOKEN)
ckpt = torch.load(ckpt_path)
model.load_state_dict(ckpt['g_ema'])
model.to(device)
model.eval()
return model
def generate_z(seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(
1, 512)).to(device).float()
def postprocess(tensors: torch.Tensor) -> torch.Tensor:
assert tensors.dim() == 4
tensors = tensors.cpu()
std = torch.FloatTensor([0.229, 0.224, 0.225])[None, :, None, None]
mean = torch.FloatTensor([0.485, 0.456, 0.406])[None, :, None, None]
tensors = tensors * std + mean
tensors = (tensors * 255).clamp(0, 255).to(torch.uint8)
return tensors
@torch.inference_mode()
def generate_image(model_name: str, seed: int, model_dict: dict,
device: torch.device) -> PIL.Image.Image:
model = model_dict[model_name]
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(seed, device)
out, _ = model(z)
out = postprocess(out)
out = out.numpy()[0].transpose(1, 2, 0)
return PIL.Image.fromarray(out, 'RGB')
def main():
gr.close_all()
args = parse_args()
device = torch.device(args.device)
model_dict = {name: load_model(name, device) for name in MODEL_NAMES}
func = functools.partial(generate_image,
model_dict=model_dict,
device=device)
func = functools.update_wrapper(func, generate_image)
gr.Interface(
func,
[
gr.inputs.Radio(MODEL_NAMES,
type='value',
default='FFHQ_256',
label='Model',
optional=False),
gr.inputs.Slider(0, 2147483647, step=1, default=0, label='Seed'),
],
gr.outputs.Image(type='pil', label='Output'),
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|