Spaces:
Runtime error
Runtime error
File size: 4,266 Bytes
9c4c9e6 b4a6915 9c4c9e6 2ee6873 b4a6915 9c4c9e6 b4a6915 a258609 9c4c9e6 b4a6915 9c4c9e6 b4a6915 9c4c9e6 b4a6915 4b1ebb6 9c4c9e6 b4a6915 9c4c9e6 b4a6915 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
#!/usr/bin/env python
from __future__ import annotations
import functools
import os
import random
import shlex
import subprocess
import sys
import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
if os.environ.get('SYSTEM') == 'spaces':
with open('patch') as f:
subprocess.run(shlex.split('patch -p1'),
cwd='stylegan2-pytorch',
stdin=f)
if not torch.cuda.is_available():
with open('patch-cpu') as f:
subprocess.run(shlex.split('patch -p1'),
cwd='stylegan2-pytorch',
stdin=f)
sys.path.insert(0, 'stylegan2-pytorch')
from model import Generator
DESCRIPTION = '''# [TADNE](https://thisanimedoesnotexist.ai/) (This Anime Does Not Exist)
Related Apps:
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
- [TADNE Interpolation](https://huggingface.co/spaces/hysts/TADNE-interpolation)
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
'''
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/TADNE/resolve/main/samples'
ARTICLE = f'''## Generated images
- size: 512x512
- truncation: 0.7
- seed: 0-99

'''
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def load_model(device: torch.device) -> nn.Module:
model = Generator(512, 1024, 4, channel_multiplier=2)
path = hf_hub_download('public-data/TADNE',
'models/aydao-anime-danbooru2019s-512-5268480.pt')
checkpoint = torch.load(path)
model.load_state_dict(checkpoint['g_ema'])
model.eval()
model.to(device)
model.latent_avg = checkpoint['latent_avg'].to(device)
with torch.inference_mode():
z = torch.zeros((1, model.style_dim)).to(device)
model([z], truncation=0.7, truncation_latent=model.latent_avg)
return model
def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
return torch.from_numpy(np.random.RandomState(seed).randn(
1, z_dim)).to(device).float()
@torch.inference_mode()
def generate_image(seed: int, truncation_psi: float, randomize_noise: bool,
model: nn.Module, device: torch.device) -> np.ndarray:
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
z = generate_z(model.style_dim, seed, device)
out, _ = model([z],
truncation=truncation_psi,
truncation_latent=model.latent_avg,
randomize_noise=randomize_noise)
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return out[0].cpu().numpy()
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = load_model(device)
fn = functools.partial(generate_image, model=model, device=device)
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
seed = gr.Slider(label='Seed',
minimum=0,
maximum=MAX_SEED,
step=1,
value=0)
randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
psi = gr.Slider(label='Truncation psi',
minimum=0,
maximum=2,
step=0.05,
value=0.7)
randomize_noise = gr.Checkbox(label='Randomize Noise', value=False)
run_button = gr.Button('Run')
with gr.Column():
result = gr.Image(label='Output')
gr.Markdown(ARTICLE)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=fn,
inputs=[seed, psi, randomize_noise],
outputs=result,
api_name='run',
)
demo.queue(max_size=10).launch()
|