File size: 4,220 Bytes
9c4c9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a258609
 
 
 
 
 
 
 
9c4c9e6
 
 
 
 
 
 
a258609
 
9c4c9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2771c3
9c4c9e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import subprocess
import sys

import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

if os.environ.get('SYSTEM') == 'spaces':
    subprocess.call('git apply ../patch'.split(), cwd='stylegan2-pytorch')

sys.path.insert(0, 'stylegan2-pytorch')

from model import Generator

TITLE = 'TADNE (This Anime Does Not Exist)'
DESCRIPTION = '''The original TADNE site is https://thisanimedoesnotexist.ai/.

Expected execution time on Hugging Face Spaces: 4s

Related Apps:
- [TADNE Image Viewer](https://huggingface.co/spaces/hysts/TADNE-image-viewer)
- [TADNE Image Selector](https://huggingface.co/spaces/hysts/TADNE-image-selector)
- [TADNE Interpolation](https://huggingface.co/spaces/hysts/TADNE-interpolation)
- [TADNE Image Search with DeepDanbooru](https://huggingface.co/spaces/hysts/TADNE-image-search-with-DeepDanbooru)
'''
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/TADNE/resolve/main/samples'
ARTICLE = f'''## Generated images
- size: 512x512
- truncation: 0.7
- seed: 0-99
![samples]({SAMPLE_IMAGE_DIR}/sample.jpg)

<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.tadne" alt="visitor badge"/></center>
'''

TOKEN = os.environ['TOKEN']


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    return parser.parse_args()


def load_model(device: torch.device) -> nn.Module:
    model = Generator(512, 1024, 4, channel_multiplier=2)
    path = hf_hub_download('hysts/TADNE',
                           'models/aydao-anime-danbooru2019s-512-5268480.pt',
                           use_auth_token=TOKEN)
    checkpoint = torch.load(path)
    model.load_state_dict(checkpoint['g_ema'])
    model.eval()
    model.to(device)
    model.latent_avg = checkpoint['latent_avg'].to(device)
    with torch.inference_mode():
        z = torch.zeros((1, model.style_dim)).to(device)
        model([z], truncation=0.7, truncation_latent=model.latent_avg)
    return model


def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
    return torch.from_numpy(np.random.RandomState(seed).randn(
        1, z_dim)).to(device).float()


@torch.inference_mode()
def generate_image(seed: int, truncation_psi: float, randomize_noise: bool,
                   model: nn.Module, device: torch.device) -> np.ndarray:
    seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))

    z = generate_z(model.style_dim, seed, device)
    out, _ = model([z],
                   truncation=truncation_psi,
                   truncation_latent=model.latent_avg,
                   randomize_noise=randomize_noise)
    out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
    return out[0].cpu().numpy()


def main():
    args = parse_args()
    device = torch.device(args.device)

    model = load_model(device)

    func = functools.partial(generate_image, model=model, device=device)
    func = functools.update_wrapper(func, generate_image)

    gr.Interface(
        func,
        [
            gr.inputs.Number(default=55376, label='Seed'),
            gr.inputs.Slider(
                0, 2, step=0.05, default=0.7, label='Truncation psi'),
            gr.inputs.Checkbox(default=False, label='Randomize Noise'),
        ],
        gr.outputs.Image(type='numpy', label='Output'),
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()