#!/usr/bin/env python from __future__ import annotations import os import pathlib import shlex import subprocess import tarfile if os.getenv("SYSTEM") == "spaces": subprocess.run(shlex.split("pip install click==7.1.2")) subprocess.run(shlex.split("pip install typer==0.9.4")) import mim mim.uninstall("mmcv-full", confirm_yes=True) mim.install("mmcv-full==1.5.0", is_yes=True) subprocess.call(shlex.split("pip uninstall -y opencv-python")) subprocess.call(shlex.split("pip uninstall -y opencv-python-headless")) subprocess.call(shlex.split("pip install opencv-python-headless==4.8.0.74")) import gradio as gr from model import AppModel DESCRIPTION = """# [ViTPose](https://github.com/ViTAE-Transformer/ViTPose) Related app: [https://huggingface.co/spaces/Gradio-Blocks/ViTPose](https://huggingface.co/spaces/Gradio-Blocks/ViTPose) """ def extract_tar() -> None: if pathlib.Path("mmdet_configs/configs").exists(): return with tarfile.open("mmdet_configs/configs.tar") as f: f.extractall("mmdet_configs") extract_tar() model = AppModel() with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): input_video = gr.Video(label="Input Video", format="mp4", elem_id="input_video") detector_name = gr.Dropdown( label="Detector", choices=list(model.det_model.MODEL_DICT.keys()), value=model.det_model.model_name ) pose_model_name = gr.Dropdown( label="Pose Model", choices=list(model.pose_model.MODEL_DICT.keys()), value=model.pose_model.model_name ) det_score_threshold = gr.Slider(label="Box Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5) max_num_frames = gr.Slider(label="Maximum Number of Frames", minimum=1, maximum=300, step=1, value=60) predict_button = gr.Button("Predict") pose_preds = gr.State() paths = sorted(pathlib.Path("videos").rglob("*.mp4")) gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_video) with gr.Column(): result = gr.Video(label="Result", format="mp4", elem_id="result") vis_kpt_score_threshold = gr.Slider( label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.3 ) vis_dot_radius = gr.Slider(label="Dot Radius", minimum=1, maximum=10, step=1, value=4) vis_line_thickness = gr.Slider(label="Line Thickness", minimum=1, maximum=10, step=1, value=2) redraw_button = gr.Button("Redraw") detector_name.change(fn=model.det_model.set_model, inputs=detector_name) pose_model_name.change(fn=model.pose_model.set_model, inputs=pose_model_name) predict_button.click( fn=model.run, inputs=[ input_video, detector_name, pose_model_name, det_score_threshold, max_num_frames, vis_kpt_score_threshold, vis_dot_radius, vis_line_thickness, ], outputs=[ result, pose_preds, ], ) redraw_button.click( fn=model.visualize_pose_results, inputs=[ input_video, pose_preds, vis_kpt_score_threshold, vis_dot_radius, vis_line_thickness, ], outputs=result, ) if __name__ == "__main__": demo.queue(max_size=10).launch()