#!/usr/bin/env python from __future__ import annotations import functools import os import pathlib import shlex import subprocess import tarfile if os.getenv("SYSTEM") == "spaces": subprocess.run(shlex.split("pip install git+https://github.com/facebookresearch/detectron2@v0.6")) subprocess.run(shlex.split("pip install git+https://github.com/aim-uofa/AdelaiDet@7bf9d87")) import gradio as gr import huggingface_hub import numpy as np import torch from adet.config import get_cfg from detectron2.data.detection_utils import read_image from detectron2.engine.defaults import DefaultPredictor from detectron2.utils.visualizer import Visualizer DESCRIPTION = "# [Yet-Another-Anime-Segmenter](https://github.com/zymk9/Yet-Another-Anime-Segmenter)" MODEL_REPO = "public-data/Yet-Another-Anime-Segmenter" def load_sample_image_paths() -> list[pathlib.Path]: image_dir = pathlib.Path("images") if not image_dir.exists(): dataset_repo = "hysts/sample-images-TADNE" path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset") with tarfile.open(path) as f: f.extractall() return sorted(image_dir.glob("*")) def load_model(device: torch.device) -> DefaultPredictor: config_path = huggingface_hub.hf_hub_download(MODEL_REPO, "SOLOv2.yaml") model_path = huggingface_hub.hf_hub_download(MODEL_REPO, "SOLOv2.pth") cfg = get_cfg() cfg.merge_from_file(config_path) cfg.MODEL.WEIGHTS = model_path cfg.MODEL.DEVICE = device.type cfg.freeze() return DefaultPredictor(cfg) def predict( image_path: str, class_score_threshold: float, mask_score_threshold: float, model: DefaultPredictor ) -> tuple[np.ndarray, np.ndarray]: model.score_threshold = class_score_threshold model.mask_threshold = mask_score_threshold image = read_image(image_path, format="BGR") preds = model(image) instances = preds["instances"].to("cpu") visualizer = Visualizer(image[:, :, ::-1]) vis = visualizer.draw_instance_predictions(predictions=instances) vis = vis.get_image() masked = image.copy()[:, :, ::-1] mask = instances.pred_masks.cpu().numpy().astype(int).max(axis=0) masked[mask == 0] = 255 return vis, masked image_paths = load_sample_image_paths() examples = [[path.as_posix(), 0.1, 0.5] for path in image_paths] device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = load_model(device) fn = functools.partial(predict, model=model) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): image = gr.Image(label="Input", type="filepath") class_score_threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.1) mask_score_threshold = gr.Slider(label="Mask Score Threshold", minimum=0, maximum=1, step=0.05, value=0.5) run_button = gr.Button("Run") with gr.Column(): result_instances = gr.Image(label="Instances") result_masked = gr.Image(label="Masked") inputs = [image, class_score_threshold, mask_score_threshold] outputs = [result_instances, result_masked] gr.Examples( examples=examples, inputs=inputs, outputs=outputs, fn=fn, cache_examples=os.getenv("CACHE_EXAMPLES") == "1", ) run_button.click( fn=fn, inputs=inputs, outputs=outputs, api_name="predict", ) if __name__ == "__main__": demo.queue(max_size=15).launch()