hysts's picture
hysts HF staff
Add files
731a1ef
#!/usr/bin/env python
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_INPUT_TOKEN_LENGTH = 4096
model_id = "Zyphra/Zamba2-7B-instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
@spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[dict],
) -> Iterator[str]:
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=MAX_INPUT_TOKEN_LENGTH,
do_sample=False,
num_beams=1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
demo = gr.ChatInterface(
fn=generate,
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
cache_examples=False,
type="messages",
description="# Zamba2-7B-instruct",
css_paths="style.css",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()