#!/usr/bin/env python from collections.abc import Iterator from threading import Thread import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer MAX_INPUT_TOKEN_LENGTH = 4096 model_id = "Zyphra/Zamba2-7B-instruct" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_id) @spaces.GPU(duration=90) def generate( message: str, chat_history: list[dict], ) -> Iterator[str]: conversation = [*chat_history, {"role": "user", "content": message}] input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=MAX_INPUT_TOKEN_LENGTH, do_sample=False, num_beams=1, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) demo = gr.ChatInterface( fn=generate, stop_btn=None, examples=[ ["Hello there! How are you doing?"], ["Can you explain briefly to me what is the Python programming language?"], ["Explain the plot of Cinderella in a sentence."], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], cache_examples=False, type="messages", description="# Zamba2-7B-instruct", css_paths="style.css", ) if __name__ == "__main__": demo.queue(max_size=20).launch()