File size: 3,149 Bytes
c570d14
 
 
 
 
 
aa3f835
167fab8
c570d14
 
 
 
 
167fab8
c570d14
4f1095a
c570d14
4f1095a
aa3f835
c570d14
aa3f835
4f1095a
aa3f835
4f1095a
 
aa3f835
167fab8
4f1095a
aa3f835
 
 
4f1095a
aa3f835
4f1095a
aa3f835
 
 
 
 
 
 
4f1095a
167fab8
 
c570d14
 
 
4f1095a
 
 
 
 
 
 
 
c570d14
 
 
 
 
 
167fab8
 
c570d14
 
 
 
 
 
77bce91
 
 
4f1095a
77bce91
 
 
4f1095a
 
 
 
 
 
 
77bce91
4f1095a
7ad735d
167fab8
7ad735d
 
 
4f1095a
 
 
7ad735d
4f1095a
7ad735d
 
4f1095a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python

import functools
import json
import os
import pathlib
import tarfile
from collections.abc import Callable

import gradio as gr
import huggingface_hub
import PIL.Image
import torch
import torchvision.transforms as T  # noqa: N812

DESCRIPTION = "# [RF5/danbooru-pretrained](https://github.com/RF5/danbooru-pretrained)"

MODEL_REPO = "public-data/danbooru-pretrained"


def load_sample_image_paths() -> list[pathlib.Path]:
    image_dir = pathlib.Path("images")
    if not image_dir.exists():
        dataset_repo = "hysts/sample-images-TADNE"
        path = huggingface_hub.hf_hub_download(dataset_repo, "images.tar.gz", repo_type="dataset")
        with tarfile.open(path) as f:
            f.extractall()  # noqa: S202
    return sorted(image_dir.glob("*"))


def load_model(device: torch.device) -> torch.nn.Module:
    path = huggingface_hub.hf_hub_download(MODEL_REPO, "resnet50-13306192.pth")
    state_dict = torch.load(path)
    model = torch.hub.load("RF5/danbooru-pretrained", "resnet50", pretrained=False)
    model.load_state_dict(state_dict)
    model.to(device)
    model.eval()
    return model


def load_labels() -> list[str]:
    path = huggingface_hub.hf_hub_download(MODEL_REPO, "class_names_6000.json")
    with pathlib.Path(path).open() as f:
        return json.load(f)


@torch.inference_mode()
def predict(
    image: PIL.Image.Image,
    score_threshold: float,
    transform: Callable,
    device: torch.device,
    model: torch.nn.Module,
    labels: list[str],
) -> dict[str, float]:
    data = transform(image)
    data = data.to(device).unsqueeze(0)
    preds = model(data)[0]
    preds = torch.sigmoid(preds)
    preds = preds.cpu().numpy().astype(float)

    res = {}
    for prob, label in zip(preds.tolist(), labels, strict=True):
        if prob < score_threshold:
            continue
        res[label] = prob
    return res


image_paths = load_sample_image_paths()
examples = [[path.as_posix(), 0.4] for path in image_paths]

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = load_model(device)
labels = load_labels()

transform = T.Compose(
    [
        T.Resize(360),
        T.ToTensor(),
        T.Normalize(mean=[0.7137, 0.6628, 0.6519], std=[0.2970, 0.3017, 0.2979]),
    ]
)

fn = functools.partial(predict, transform=transform, device=device, model=model, labels=labels)

with gr.Blocks(css_paths="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row():
        with gr.Column():
            image = gr.Image(label="Input", type="pil")
            threshold = gr.Slider(label="Score Threshold", minimum=0, maximum=1, step=0.05, value=0.4)
            run_button = gr.Button()
        with gr.Column():
            result = gr.Label(label="Output")

    inputs = [image, threshold]
    gr.Examples(
        examples=examples,
        inputs=inputs,
        outputs=result,
        fn=fn,
        cache_examples=os.getenv("CACHE_EXAMPLES") == "1",
    )
    run_button.click(
        fn=fn,
        inputs=inputs,
        outputs=result,
        api_name="predict",
    )

if __name__ == "__main__":
    demo.queue(max_size=15).launch()