Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import pathlib | |
import shlex | |
import subprocess | |
import tarfile | |
if os.environ.get('SYSTEM') == 'spaces': | |
subprocess.call(shlex.split('pip uninstall -y opencv-python')) | |
subprocess.call(shlex.split('pip uninstall -y opencv-python-headless')) | |
subprocess.call( | |
shlex.split('pip install opencv-python-headless==4.5.5.64')) | |
import gradio as gr | |
import huggingface_hub | |
import mediapipe as mp | |
import numpy as np | |
mp_face_detection = mp.solutions.face_detection | |
mp_drawing = mp.solutions.drawing_utils | |
TITLE = 'MediaPipe Face Detection' | |
DESCRIPTION = 'https://google.github.io/mediapipe/' | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
def load_sample_images() -> list[pathlib.Path]: | |
image_dir = pathlib.Path('images') | |
if not image_dir.exists(): | |
image_dir.mkdir() | |
dataset_repo = 'hysts/input-images' | |
filenames = ['001.tar', '005.tar'] | |
for name in filenames: | |
path = huggingface_hub.hf_hub_download(dataset_repo, | |
name, | |
repo_type='dataset', | |
use_auth_token=HF_TOKEN) | |
with tarfile.open(path) as f: | |
f.extractall(image_dir.as_posix()) | |
return sorted(image_dir.rglob('*.jpg')) | |
def run(image: np.ndarray, model_selection: int, | |
min_detection_confidence: float) -> np.ndarray: | |
with mp_face_detection.FaceDetection( | |
model_selection=model_selection, | |
min_detection_confidence=min_detection_confidence | |
) as face_detection: | |
results = face_detection.process(image) | |
res = image[:, :, ::-1].copy() | |
if results.detections is not None: | |
for detection in results.detections: | |
mp_drawing.draw_detection(res, detection) | |
return res[:, :, ::-1] | |
model_types = [ | |
'Short-range model (best for faces within 2 meters)', | |
'Full-range model (best for faces within 5 meters)', | |
] | |
image_paths = load_sample_images() | |
examples = [[path.as_posix(), model_types[0], 0.5] for path in image_paths] | |
gr.Interface( | |
fn=run, | |
inputs=[ | |
gr.Image(label='Input', type='numpy'), | |
gr.Radio(label='Model', | |
choices=model_types, | |
type='index', | |
value=model_types[0]), | |
gr.Slider(label='Minimum Detection Confidence', | |
minimum=0, | |
maximum=1, | |
step=0.05, | |
value=0.5), | |
], | |
outputs=gr.Image(label='Output', type='numpy'), | |
examples=examples, | |
title=TITLE, | |
description=DESCRIPTION, | |
).launch(show_api=False) | |