Spaces:
Running
Running
File size: 4,941 Bytes
6ec8547 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import os
import pathlib
import subprocess
import tarfile
if os.environ.get('SYSTEM') == 'spaces':
subprocess.call('pip uninstall -y opencv-python'.split())
subprocess.call('pip uninstall -y opencv-python-headless'.split())
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
import gradio as gr
import huggingface_hub
import mediapipe as mp
import numpy as np
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_face_mesh = mp.solutions.face_mesh
TITLE = 'MediaPipe Face Mesh'
DESCRIPTION = 'https://google.github.io/mediapipe/'
ARTICLE = None
TOKEN = os.environ['TOKEN']
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
return parser.parse_args()
def load_sample_images() -> list[pathlib.Path]:
image_dir = pathlib.Path('images')
if not image_dir.exists():
image_dir.mkdir()
dataset_repo = 'hysts/input-images'
filenames = ['001.tar', '005.tar']
for name in filenames:
path = huggingface_hub.hf_hub_download(dataset_repo,
name,
repo_type='dataset',
use_auth_token=TOKEN)
with tarfile.open(path) as f:
f.extractall(image_dir.as_posix())
return sorted(image_dir.rglob('*.jpg'))
def run(
image: np.ndarray,
max_num_faces: int,
min_detection_confidence: float,
show_tesselation: bool,
show_contours: bool,
show_irises: bool,
) -> np.ndarray:
with mp_face_mesh.FaceMesh(
static_image_mode=True,
max_num_faces=max_num_faces,
refine_landmarks=True,
min_detection_confidence=min_detection_confidence) as face_mesh:
results = face_mesh.process(image)
res = image[:, :, ::-1].copy()
if results.multi_face_landmarks is not None:
for face_landmarks in results.multi_face_landmarks:
if show_tesselation:
mp_drawing.draw_landmarks(
image=res,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_TESSELATION,
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.
get_default_face_mesh_tesselation_style())
if show_contours:
mp_drawing.draw_landmarks(
image=res,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_CONTOURS,
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.
get_default_face_mesh_contours_style())
if show_irises:
mp_drawing.draw_landmarks(
image=res,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_IRISES,
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.
get_default_face_mesh_iris_connections_style())
return res[:, :, ::-1]
def main():
args = parse_args()
image_paths = load_sample_images()
examples = [[path.as_posix(), 5, 0.5, True, True, True]
for path in image_paths]
gr.Interface(
run,
[
gr.inputs.Image(type='numpy', label='Input'),
gr.inputs.Slider(
0, 10, step=1, default=5, label='Max Number of Faces'),
gr.inputs.Slider(0,
1,
step=0.05,
default=0.5,
label='Minimum Detection Confidence'),
gr.inputs.Checkbox(default=True, label='Show Tesselation'),
gr.inputs.Checkbox(default=True, label='Show Contours'),
gr.inputs.Checkbox(default=True, label='Show Irises'),
],
gr.outputs.Image(type='numpy', label='Output'),
examples=examples,
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
theme=args.theme,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|