Spaces:
Running
Running
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import pathlib | |
import shlex | |
import subprocess | |
import tarfile | |
if os.environ.get('SYSTEM') == 'spaces': | |
subprocess.call(shlex.split('pip uninstall -y opencv-python')) | |
subprocess.call(shlex.split('pip uninstall -y opencv-python-headless')) | |
subprocess.call( | |
shlex.split('pip install opencv-python-headless==4.5.5.64')) | |
import gradio as gr | |
import huggingface_hub | |
import mediapipe as mp | |
import numpy as np | |
mp_drawing = mp.solutions.drawing_utils | |
mp_drawing_styles = mp.solutions.drawing_styles | |
mp_face_mesh = mp.solutions.face_mesh | |
TITLE = 'MediaPipe Face Mesh' | |
DESCRIPTION = 'https://google.github.io/mediapipe/' | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
def load_sample_images() -> list[pathlib.Path]: | |
image_dir = pathlib.Path('images') | |
if not image_dir.exists(): | |
image_dir.mkdir() | |
dataset_repo = 'hysts/input-images' | |
filenames = ['001.tar', '005.tar'] | |
for name in filenames: | |
path = huggingface_hub.hf_hub_download(dataset_repo, | |
name, | |
repo_type='dataset', | |
use_auth_token=HF_TOKEN) | |
with tarfile.open(path) as f: | |
f.extractall(image_dir.as_posix()) | |
return sorted(image_dir.rglob('*.jpg')) | |
def run( | |
image: np.ndarray, | |
max_num_faces: int, | |
min_detection_confidence: float, | |
show_tesselation: bool, | |
show_contours: bool, | |
show_irises: bool, | |
) -> np.ndarray: | |
with mp_face_mesh.FaceMesh( | |
static_image_mode=True, | |
max_num_faces=max_num_faces, | |
refine_landmarks=True, | |
min_detection_confidence=min_detection_confidence) as face_mesh: | |
results = face_mesh.process(image) | |
res = image[:, :, ::-1].copy() | |
if results.multi_face_landmarks is not None: | |
for face_landmarks in results.multi_face_landmarks: | |
if show_tesselation: | |
mp_drawing.draw_landmarks( | |
image=res, | |
landmark_list=face_landmarks, | |
connections=mp_face_mesh.FACEMESH_TESSELATION, | |
landmark_drawing_spec=None, | |
connection_drawing_spec=mp_drawing_styles. | |
get_default_face_mesh_tesselation_style()) | |
if show_contours: | |
mp_drawing.draw_landmarks( | |
image=res, | |
landmark_list=face_landmarks, | |
connections=mp_face_mesh.FACEMESH_CONTOURS, | |
landmark_drawing_spec=None, | |
connection_drawing_spec=mp_drawing_styles. | |
get_default_face_mesh_contours_style()) | |
if show_irises: | |
mp_drawing.draw_landmarks( | |
image=res, | |
landmark_list=face_landmarks, | |
connections=mp_face_mesh.FACEMESH_IRISES, | |
landmark_drawing_spec=None, | |
connection_drawing_spec=mp_drawing_styles. | |
get_default_face_mesh_iris_connections_style()) | |
return res[:, :, ::-1] | |
image_paths = load_sample_images() | |
examples = [[path.as_posix(), 5, 0.5, True, True, True] | |
for path in image_paths] | |
gr.Interface( | |
fn=run, | |
inputs=[ | |
gr.Image(label='Input', type='numpy'), | |
gr.Slider(label='Max Number of Faces', | |
minimum=0, | |
maximum=10, | |
step=1, | |
value=5), | |
gr.Slider(label='Minimum Detection Confidence', | |
minimum=0, | |
maximum=1, | |
step=0.05, | |
value=0.5), | |
gr.Checkbox(label='Show Tesselation', value=True), | |
gr.Checkbox(label='Show Contours', value=True), | |
gr.Checkbox(label='Show Irises', value=True), | |
], | |
outputs=gr.Image(label='Output', type='numpy'), | |
examples=examples, | |
title=TITLE, | |
description=DESCRIPTION, | |
).launch(show_api=False) | |