File size: 7,701 Bytes
ef198e0
c2ca6fe
ef198e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cafd606
ef198e0
 
 
 
 
 
 
 
 
 
 
 
 
 
835933c
ef198e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# modified from https://github.com/Profactor/continuous-remeshing
import spaces
import nvdiffrast.torch as dr
import torch
from typing import Tuple
import torch.nn.functional as tfunc


def _warmup(glctx, device=None):
    device = 'cuda' if device is None else device
    #windows workaround for https://github.com/NVlabs/nvdiffrast/issues/59
    def tensor(*args, **kwargs):
        return torch.tensor(*args, device=device, **kwargs)
    pos = tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32)
    tri = tensor([[0, 1, 2]], dtype=torch.int32)
    dr.rasterize(glctx, pos, tri, resolution=[256, 256])


class NormalsRenderer:
    
    _glctx:dr.RasterizeCudaContext = None
    
    def __init__(
            self,
            mv: torch.Tensor, #C,4,4
            proj: torch.Tensor, #C,4,4
            image_size: Tuple[int,int],
            mvp = None,
            device=None,
            ):
        if mvp is None:
            self._mvp = proj @ mv #C,4,4
        else:
            self._mvp = mvp
        self._image_size = image_size
        self._glctx = dr.RasterizeCudaContext(device=device)
        _warmup(self._glctx, device)

    def render(self,
            vertices: torch.Tensor, #V,3 float
            normals: torch.Tensor, #V,3 float   in [-1, 1]
            faces: torch.Tensor, #F,3 long
            ) ->torch.Tensor: #C,H,W,4

        V = vertices.shape[0]
        faces = faces.type(torch.int32)
        vert_hom = torch.cat((vertices, torch.ones(V,1,device=vertices.device)),axis=-1) #V,3 -> V,4
        vertices_clip = vert_hom @ self._mvp.transpose(-2,-1) #C,V,4
        
        rast_out,_ = dr.rasterize(self._glctx, vertices_clip, faces, resolution=self._image_size, grad_db=False) #C,H,W,4
        vert_col = (normals+1)/2 #V,3
        col,_ = dr.interpolate(vert_col, rast_out, faces) #C,H,W,3
        alpha = torch.clamp(rast_out[..., -1:], max=1) #C,H,W,1
        col = torch.concat((col,alpha),dim=-1) #C,H,W,4
        col = dr.antialias(col, rast_out, vertices_clip, faces) #C,H,W,4
        return col #C,H,W,4



from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh.shader import ShaderBase
from pytorch3d.renderer import (
    RasterizationSettings,
    MeshRendererWithFragments,
    TexturesVertex,
    MeshRasterizer,
    BlendParams,
    FoVOrthographicCameras,
    look_at_view_transform,
    hard_rgb_blend,
)

class VertexColorShader(ShaderBase):
    def forward(self, fragments, meshes, **kwargs) -> torch.Tensor:
        blend_params = kwargs.get("blend_params", self.blend_params)
        texels = meshes.sample_textures(fragments)
        return hard_rgb_blend(texels, fragments, blend_params)

def render_mesh_vertex_color(mesh, cameras, H, W, blur_radius=0.0, faces_per_pixel=1, bkgd=(0., 0., 0.), dtype=torch.float32, device="cuda"):
    if len(mesh) != len(cameras):
        if len(cameras) % len(mesh) == 0:
            mesh = mesh.extend(len(cameras))
        else:
            raise NotImplementedError()
    
    # render requires everything in float16 or float32
    input_dtype = dtype
    blend_params = BlendParams(1e-4, 1e-4, bkgd)

    # Define the settings for rasterization and shading
    raster_settings = RasterizationSettings(
        image_size=(H, W),
        blur_radius=blur_radius,
        faces_per_pixel=faces_per_pixel,
        clip_barycentric_coords=True,
        bin_size=None,
        max_faces_per_bin=None,
    )

    # Create a renderer by composing a rasterizer and a shader
    # We simply render vertex colors through the custom VertexColorShader (no lighting, materials are used)
    renderer = MeshRendererWithFragments(
        rasterizer=MeshRasterizer(
            cameras=cameras,
            raster_settings=raster_settings
        ),
        shader=VertexColorShader(
            device=device,
            cameras=cameras,
            blend_params=blend_params
        )
    )

    # render RGB and depth, get mask
    with torch.autocast(dtype=input_dtype, device_type=torch.device(device).type):
        images, _ = renderer(mesh)
    return images   # BHW4

class Pytorch3DNormalsRenderer: # 100 times slower!!!
    def __init__(self, cameras, image_size, device):
        self.cameras = cameras.to(device)
        self._image_size = image_size
        self.device = device
    
    def render(self,
            vertices: torch.Tensor, #V,3 float
            normals: torch.Tensor, #V,3 float   in [-1, 1]
            faces: torch.Tensor, #F,3 long
            ) ->torch.Tensor: #C,H,W,4
        mesh = Meshes(verts=[vertices], faces=[faces], textures=TexturesVertex(verts_features=[(normals + 1) / 2])).to(self.device)
        return render_mesh_vertex_color(mesh, self.cameras, self._image_size[0], self._image_size[1], device=self.device)
    
def save_tensor_to_img(tensor, save_dir):
    from PIL import Image
    import numpy as np
    for idx, img in enumerate(tensor):
        img = img[..., :3].cpu().numpy()
        img = (img * 255).astype(np.uint8)
        img = Image.fromarray(img)
        img.save(save_dir + f"{idx}.png")

if __name__ == "__main__":
    import sys
    import os
    sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
    from mesh_reconstruction.func import make_star_cameras_orthographic, make_star_cameras_orthographic_py3d
    cameras = make_star_cameras_orthographic_py3d([0, 270, 180, 90], device="cuda", focal=1., dist=4.0)
    mv,proj = make_star_cameras_orthographic(4, 1)
    resolution = 1024
    renderer1 = NormalsRenderer(mv,proj, [resolution,resolution], device="cuda")
    renderer2 = Pytorch3DNormalsRenderer(cameras, [resolution,resolution], device="cuda")
    vertices = torch.tensor([[0,0,0],[0,0,1],[0,1,0],[1,0,0]], device="cuda", dtype=torch.float32)
    normals = torch.tensor([[-1,-1,-1],[1,-1,-1],[-1,-1,1],[-1,1,-1]], device="cuda", dtype=torch.float32)
    faces = torch.tensor([[0,1,2],[0,1,3],[0,2,3],[1,2,3]], device="cuda", dtype=torch.long)
    
    import time
    t0 = time.time()
    r1 = renderer1.render(vertices, normals, faces)
    print("time r1:", time.time() - t0)
    
    t0 = time.time()
    r2 = renderer2.render(vertices, normals, faces)
    print("time r2:", time.time() - t0)
    
    for i in range(4):
        print((r1[i]-r2[i]).abs().mean(), (r1[i]+r2[i]).abs().mean())


def calc_face_normals(
        vertices:torch.Tensor, #V,3 first vertex may be unreferenced
        faces:torch.Tensor, #F,3 long, first face may be all zero
        normalize:bool=False,
        )->torch.Tensor: #F,3
    """
         n
         |
         c0     corners ordered counterclockwise when
        / \     looking onto surface (in neg normal direction)
      c1---c2
    """
    full_vertices = vertices[faces] #F,C=3,3
    v0,v1,v2 = full_vertices.unbind(dim=1) #F,3
    face_normals = torch.cross(v1-v0,v2-v0, dim=1) #F,3
    if normalize:
        face_normals = tfunc.normalize(face_normals, eps=1e-6, dim=1) 
    return face_normals #F,3


def calc_vertex_normals(
        vertices:torch.Tensor, #V,3 first vertex may be unreferenced
        faces:torch.Tensor, #F,3 long, first face may be all zero
        face_normals:torch.Tensor=None, #F,3, not normalized
        )->torch.Tensor: #F,3

    F = faces.shape[0]

    if face_normals is None:
        face_normals = calc_face_normals(vertices,faces)
    
    vertex_normals = torch.zeros((vertices.shape[0],3,3),dtype=vertices.dtype,device=vertices.device) #V,C=3,3
    vertex_normals.scatter_add_(dim=0,index=faces[:,:,None].expand(F,3,3),src=face_normals[:,None,:].expand(F,3,3))
    vertex_normals = vertex_normals.sum(dim=1) #V,3
    return tfunc.normalize(vertex_normals, eps=1e-6, dim=1)