Spaces:
Running
on
L40S
Running
on
L40S
File size: 13,847 Bytes
ef198e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import torch
import numpy as np
import trimesh
from PIL import Image
from typing import List
from tqdm import tqdm
from sklearn.neighbors import KDTree
from refine.func import from_py3d_mesh, get_cameras_list, make_star_cameras_orthographic, multiview_color_projection, simple_clean_mesh, to_py3d_mesh, to_pyml_mesh
from refine.opt import MeshOptimizer
from refine.render import NormalsRenderer, calc_vertex_normals
import pytorch3d
from pytorch3d.structures import Meshes
def remove_color(arr):
if arr.shape[-1] == 4:
arr = arr[..., :3]
# calc diffs
base = arr[0, 0]
diffs = np.abs(arr.astype(np.int32) - base.astype(np.int32)).sum(axis=-1)
alpha = (diffs <= 80)
arr[alpha] = 255
alpha = ~alpha
arr = np.concatenate([arr, alpha[..., None].astype(np.int32) * 255], axis=-1)
return arr
def simple_remove(imgs):
"""Only works for normal"""
if not isinstance(imgs, list):
imgs = [imgs]
single_input = True
else:
single_input = False
rets = []
for img in imgs:
arr = np.array(img)
arr = remove_color(arr)
rets.append(Image.fromarray(arr.astype(np.uint8)))
if single_input:
return rets[0]
return rets
def erode_alpha(img_list):
out_img_list = []
for idx, img in enumerate(img_list):
arr = np.array(img)
alpha = (arr[:, :, 3] > 127).astype(np.uint8)
# erode 1px
import cv2
alpha = cv2.erode(alpha, np.ones((3, 3), np.uint8), iterations=1)
alpha = (alpha * 255).astype(np.uint8)
img = Image.fromarray(np.concatenate([arr[:, :, :3], alpha[:, :, None]], axis=-1))
out_img_list.append(img)
return out_img_list
def merge_small_faces(mesh, thres=1e-5):
area_faces = mesh.area_faces
small_faces = area_faces < thres
vertices = mesh.vertices
faces = mesh.faces
new_vertices = vertices.tolist()
vertex_mapping = {}
for face_idx in np.where(small_faces)[0]:
face = faces[face_idx]
v1, v2, v3 = face
center = np.mean(vertices[face], axis=0)
new_vertex_idx = len(new_vertices)
new_vertices.append(center)
vertex_mapping[v1] = new_vertex_idx
vertex_mapping[v2] = new_vertex_idx
vertex_mapping[v3] = new_vertex_idx
for k,v in vertex_mapping.items():
faces[faces == k] = v
faces = faces[~small_faces]
new_mesh = trimesh.Trimesh(vertices=new_vertices, faces=faces, postprocess=False)
new_mesh.remove_unreferenced_vertices()
new_mesh.remove_degenerate_faces()
new_mesh.remove_duplicate_faces()
return new_mesh
def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"):
# Convert the background color to a PyTorch tensor
new_bkgd = torch.tensor(new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device)
# Convert all images to PyTorch tensors and process them
imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32)) for img in img_pils]).to(device) / 255
img_nps = imgs[..., :3]
alpha_nps = imgs[..., 3]
ori_bkgds = img_nps[:, :1, :1]
# Avoid divide by zero and calculate the original image
alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1)
ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))) / alpha_nps_clamp.unsqueeze(-1)
ori_img_nps = torch.clamp(ori_img_nps, 0, 1)
img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05, ori_img_nps * alpha_nps.unsqueeze(-1) + new_bkgd * (1 - alpha_nps.unsqueeze(-1)), new_bkgd)
rgba_img_np = torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1)
return rgba_img_np
def reconstruct_stage1(pils: List[Image.Image], steps=100, vertices=None, faces=None, fixed_v=None, fixed_f=None, lr=0.03, start_edge_len=0.15, end_edge_len=0.005,
decay=0.995, loss_expansion_weight=0.1, gain=0.1, remesh_interval=1, remesh_start=0, distract_mask=None, distract_bbox=None):
vertices, faces = vertices.cuda(), faces.cuda()
assert len(pils) == 6
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
mv = mv[[4, 3, 2, 0, 6, 5]]
renderer = NormalsRenderer(mv,proj,list(pils[0].size))
target_images = init_target(pils, new_bkgd=(0., 0., 0.))
# init from coarse mesh
opt = MeshOptimizer(vertices, faces, local_edgelen=False, gain=gain, edge_len_lims=(end_edge_len, start_edge_len), lr=lr,
remesh_interval=remesh_interval, remesh_start=remesh_start)
_vertices = opt.vertices
_faces = opt.faces
if fixed_v is not None and fixed_f is not None:
kdtree = KDTree(fixed_v.cpu().numpy())
mask = target_images[..., -1] < 0.5
for i in tqdm(range(steps)):
faces = torch.cat([_faces, fixed_f + len(_vertices)], dim=0) if fixed_f is not None else _faces
vertices = torch.cat([_vertices, fixed_v], dim=0) if fixed_v is not None else _vertices
opt.zero_grad()
opt._lr *= decay
normals = calc_vertex_normals(vertices,faces)
normals[:, 0] *= -1
normals[:, 2] *= -1
images = renderer.render(vertices,normals,faces)
loss_expand = 0.5 * ((vertices+normals).detach() - vertices).pow(2).mean()
t_mask = images[..., -1] > 0.5
loss_target_l2 = (images[t_mask] - target_images[t_mask]).abs().pow(2).mean()
loss_alpha_target_mask_l2 = (images[..., -1][mask] - target_images[..., -1][mask]).pow(2).mean()
loss = loss_target_l2 + loss_alpha_target_mask_l2 + loss_expand * loss_expansion_weight
if distract_mask is not None:
hair_visible_normals = normals
hair_visible_normals[len(_vertices):] = -1.
_images = renderer.render(vertices,hair_visible_normals,faces)
loss_distract = (_images[0][distract_mask] - target_images[0][distract_mask]).pow(2).mean()
target_outside = target_images[0][..., :3].clone()
target_outside[~distract_mask] = 0.
loss_outside_distract = (_images[0][..., :3][~distract_mask] - target_outside[..., :3][~distract_mask]).pow(2).mean()
loss = loss + loss_distract * 1. + loss_outside_distract * 10.
if fixed_v is not None and fixed_f is not None:
_, idx = kdtree.query(_vertices.detach().cpu().numpy(), k=1)
idx = idx.squeeze()
anchors = fixed_v[idx].detach()
normals_fixed = calc_vertex_normals(fixed_v, fixed_f)
loss_anchor = (torch.clamp(((anchors - _vertices) * normals_fixed[idx]).sum(-1), min=-0)+0).pow(3)
loss_anchor_dist_mask = (anchors - _vertices).norm(dim=-1) < 0.05
loss_anchor = loss_anchor[loss_anchor_dist_mask].mean()
loss = loss + loss_anchor * 100.
# out of box
loss_oob = (vertices.abs() > 0.99).float().mean() * 10
loss = loss + loss_oob
loss.backward()
opt.step()
if i % remesh_interval == 0 and i >= remesh_start:
_vertices,_faces = opt.remesh(poisson=False)
vertices, faces = opt._vertices.detach(), opt._faces.detach()
return vertices, faces
def run_mesh_refine(vertices, faces, pils: List[Image.Image], fixed_v=None, fixed_f=None, steps=100, start_edge_len=0.02, end_edge_len=0.005,
decay=0.99, update_normal_interval=10, update_warmup=10, return_mesh=True, process_inputs=True, process_outputs=True, remesh_interval=20):
poission_steps = []
assert len(pils) == 6
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
mv = mv[[4, 3, 2, 0, 6, 5]]
renderer = NormalsRenderer(mv,proj,list(pils[0].size))
target_images = init_target(pils, new_bkgd=(0., 0., 0.)) # 4s
# init from coarse mesh
opt = MeshOptimizer(vertices, faces, ramp=5, edge_len_lims=(end_edge_len, start_edge_len), local_edgelen=False, laplacian_weight=0.02)
_vertices = opt.vertices
_faces = opt.faces
alpha_init = None
mask = target_images[..., -1] < 0.5
for i in tqdm(range(steps)):
faces = torch.cat([_faces, fixed_f + len(_vertices)], dim=0) if fixed_f is not None else _faces
vertices = torch.cat([_vertices, fixed_v], dim=0) if fixed_v is not None else _vertices
opt.zero_grad()
opt._lr *= decay
normals = calc_vertex_normals(vertices,faces)
images = renderer.render(vertices,normals,faces)
if alpha_init is None:
alpha_init = images.detach()
if i < update_warmup or i % update_normal_interval == 0:
with torch.no_grad():
py3d_mesh = to_py3d_mesh(vertices, faces, normals)
cameras = get_cameras_list(azim_list = [180, 225, 270, 0, 90, 135], device=vertices.device, focal=1/1.2)
_, _, target_normal = from_py3d_mesh(multiview_color_projection(py3d_mesh, pils, cameras_list=cameras, weights=[2,0.8,0.8,2,0.8,0.8], confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy='original', reweight_with_cosangle='linear'))
target_normal = target_normal * 2 - 1
target_normal = torch.nn.functional.normalize(target_normal, dim=-1)
target_normal[:, 0] *= -1
target_normal[:, 2] *= -1
debug_images = renderer.render(vertices,target_normal,faces)
d_mask = images[..., -1] > 0.5
loss_debug_l2 = (images[..., :3][d_mask] - debug_images[..., :3][d_mask]).pow(2).mean()
loss_alpha_target_mask_l2 = (images[..., -1][mask] - target_images[..., -1][mask]).pow(2).mean()
loss = loss_debug_l2 + loss_alpha_target_mask_l2
# out of box
loss_oob = (vertices.abs() > 0.99).float().mean() * 10
loss = loss + loss_oob
loss.backward()
opt.step()
if i % remesh_interval == 0:
_vertices,_faces = opt.remesh(poisson=(i in poission_steps))
vertices, faces = opt._vertices.detach(), opt._faces.detach()
if process_outputs:
vertices = vertices / 2 * 1.35
vertices[..., [0, 2]] = - vertices[..., [0, 2]]
return vertices, faces
def geo_refine(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=0.1, fixed_v=None, fixed_f=None,
distract_mask=None, distract_bbox=None, thres=3e-6, no_decompose=False):
rm_normals = simple_remove(normal_ls)
# transfer the alpha channel of rm_normals to img_list
for idx, img in enumerate(rm_normals):
rgb_ls[idx] = Image.fromarray(np.concatenate([np.array(rgb_ls[idx])[..., :3], np.array(img)[:, :, 3:4]], axis=-1))
assert np.mean(np.array(rgb_ls[0])[..., 3]) < 250
rgb_ls = erode_alpha(rgb_ls)
stage1_lr = 0.08 if fixed_v is None else 0.01
stage1_remesh_interval = 1 if fixed_v is None else 30
if no_decompose:
stage1_lr = 0.03
stage1_remesh_interval = 30
vertices, faces = reconstruct_stage1(rm_normals, steps=200, vertices=mesh_v, faces=mesh_f, fixed_v=fixed_v, fixed_f=fixed_f,
lr=stage1_lr, remesh_interval=stage1_remesh_interval, start_edge_len=0.02,
end_edge_len=0.005, gain=0.05, loss_expansion_weight=expansion_weight,
distract_mask=distract_mask, distract_bbox=distract_bbox)
vertices, faces = run_mesh_refine(vertices, faces, rm_normals, fixed_v=fixed_v, fixed_f=fixed_f, steps=100, start_edge_len=0.005, end_edge_len=0.0002,
decay=0.99, update_normal_interval=20, update_warmup=5, process_inputs=False, process_outputs=False, remesh_interval=1)
meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=2, apply_sub_divide=False, sub_divide_threshold=0.25).to("cuda")
# subdivide meshes
simp_vertices, simp_faces = meshes.verts_packed(), meshes.faces_packed()
vertices, faces = simp_vertices.detach().cpu().numpy(), simp_faces.detach().cpu().numpy()
mesh = trimesh.Trimesh(vertices=vertices, faces=faces, process=False)
mesh = merge_small_faces(mesh, thres=thres)
new_mesh = mesh.split(only_watertight=False)
new_mesh = [ j for j in new_mesh if len(j.vertices) >= 200 ]
mesh = trimesh.Scene(new_mesh).dump(concatenate=True)
vertices, faces = mesh.vertices.astype('float32'), mesh.faces
vertices, faces = trimesh.remesh.subdivide(vertices, faces)
origin_len_v, origin_len_f = len(vertices), len(faces)
# concatenate fixed_v and fixed_f
if fixed_v is not None and fixed_f is not None:
vertices, faces = np.concatenate([vertices, fixed_v.detach().cpu().numpy()], axis=0), np.concatenate([faces, fixed_f.detach().cpu().numpy() + len(vertices)], axis=0)
vertices, faces = torch.tensor(vertices, device='cuda'), torch.tensor(faces, device='cuda')
# reconstruct meshes
meshes = Meshes(verts=[vertices], faces=[faces], textures=pytorch3d.renderer.mesh.textures.TexturesVertex([torch.zeros_like(vertices).float()]))
new_meshes = multiview_color_projection(meshes, rgb_ls, resolution=1024, device="cuda", complete_unseen=True, confidence_threshold=0.2, cameras_list = get_cameras_list([180, 225, 270, 0, 90, 135], "cuda", focal=1/1.2), weights=[2.0, 0.5, 0.0, 1.0, 0.0, 0.5] if distract_mask is None else [2.0, 0.0, 0.5, 1.0, 0.5, 0.0], distract_mask=distract_mask)
# exclude fixed_v and fixed_f
if fixed_v is not None and fixed_f is not None:
new_meshes = Meshes(verts=[new_meshes.verts_packed()[:origin_len_v]], faces=[new_meshes.faces_packed()[:origin_len_f]],
textures=pytorch3d.renderer.mesh.textures.TexturesVertex([new_meshes.textures.verts_features_packed()[:origin_len_v]]))
return new_meshes, simp_vertices, simp_faces
|