Spaces:
Running
on
L40S
Running
on
L40S
File size: 53,218 Bytes
ef198e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 |
"""Blender script to render images of 3D models."""
import argparse
import json
import math
import os
import random
import sys
from typing import Any, Callable, Dict, Generator, List, Literal, Optional, Set, Tuple
import bpy
import numpy as np
from mathutils import Matrix, Vector
import pdb
MAX_DEPTH = 5.0
import shutil
IMPORT_FUNCTIONS: Dict[str, Callable] = {
"obj": bpy.ops.import_scene.obj,
"glb": bpy.ops.import_scene.gltf,
"gltf": bpy.ops.import_scene.gltf,
"usd": bpy.ops.import_scene.usd,
"fbx": bpy.ops.import_scene.fbx,
"stl": bpy.ops.import_mesh.stl,
"usda": bpy.ops.import_scene.usda,
"dae": bpy.ops.wm.collada_import,
"ply": bpy.ops.import_mesh.ply,
"abc": bpy.ops.wm.alembic_import,
"blend": bpy.ops.wm.append,
"vrm": bpy.ops.import_scene.vrm,
}
configs = {
"custom2": {"camera_pose": "z-circular-elevated", 'elevation_range': [0,0], "rotate": 0.0},
"custom_top": {"camera_pose": "z-circular-elevated", 'elevation_range': [90,90], "rotate": 0.0, "render_num": 1},
"custom_bottom": {"camera_pose": "z-circular-elevated", 'elevation_range': [-90,-90], "rotate": 0.0, "render_num": 1},
"custom_face": {"camera_pose": "z-circular-elevated", 'elevation_range': [0,0], "rotate": 0.0, "render_num": 8},
"random": {"camera_pose": "random", 'elevation_range': [-90,90], "rotate": 0.0, "render_num": 20},
}
def reset_cameras() -> None:
"""Resets the cameras in the scene to a single default camera."""
# Delete all existing cameras
bpy.ops.object.select_all(action="DESELECT")
bpy.ops.object.select_by_type(type="CAMERA")
bpy.ops.object.delete()
# Create a new camera with default properties
bpy.ops.object.camera_add()
# Rename the new camera to 'NewDefaultCamera'
new_camera = bpy.context.active_object
new_camera.name = "Camera"
# Set the new camera as the active camera for the scene
scene.camera = new_camera
def _sample_spherical(
radius_min: float = 1.5,
radius_max: float = 2.0,
maxz: float = 1.6,
minz: float = -0.75,
) -> np.ndarray:
"""Sample a random point in a spherical shell.
Args:
radius_min (float): Minimum radius of the spherical shell.
radius_max (float): Maximum radius of the spherical shell.
maxz (float): Maximum z value of the spherical shell.
minz (float): Minimum z value of the spherical shell.
Returns:
np.ndarray: A random (x, y, z) point in the spherical shell.
"""
correct = False
vec = np.array([0, 0, 0])
while not correct:
vec = np.random.uniform(-1, 1, 3)
# vec[2] = np.abs(vec[2])
radius = np.random.uniform(radius_min, radius_max, 1)
vec = vec / np.linalg.norm(vec, axis=0) * radius[0]
if maxz > vec[2] > minz:
correct = True
return vec
def randomize_camera(
radius_min: float = 1.5,
radius_max: float = 2.2,
maxz: float = 2.2,
minz: float = -2.2,
only_northern_hemisphere: bool = False,
) -> bpy.types.Object:
"""Randomizes the camera location and rotation inside of a spherical shell.
Args:
radius_min (float, optional): Minimum radius of the spherical shell. Defaults to
1.5.
radius_max (float, optional): Maximum radius of the spherical shell. Defaults to
2.0.
maxz (float, optional): Maximum z value of the spherical shell. Defaults to 1.6.
minz (float, optional): Minimum z value of the spherical shell. Defaults to
-0.75.
only_northern_hemisphere (bool, optional): Whether to only sample points in the
northern hemisphere. Defaults to False.
Returns:
bpy.types.Object: The camera object.
"""
x, y, z = _sample_spherical(
radius_min=radius_min, radius_max=radius_max, maxz=maxz, minz=minz
)
camera = bpy.data.objects["Camera"]
# only positive z
if only_northern_hemisphere:
z = abs(z)
camera.location = Vector(np.array([x, y, z]))
direction = -camera.location
rot_quat = direction.to_track_quat("-Z", "Y")
camera.rotation_euler = rot_quat.to_euler()
return camera
cached_cameras = []
def randomize_camera_with_cache(
radius_min: float = 1.5,
radius_max: float = 2.2,
maxz: float = 2.2,
minz: float = -2.2,
only_northern_hemisphere: bool = False,
idx: int = 0,
) -> bpy.types.Object:
assert len(cached_cameras) >= idx
if len(cached_cameras) == idx:
x, y, z = _sample_spherical(
radius_min=radius_min, radius_max=radius_max, maxz=maxz, minz=minz
)
cached_cameras.append((x, y, z))
else:
x, y, z = cached_cameras[idx]
camera = bpy.data.objects["Camera"]
# only positive z
if only_northern_hemisphere:
z = abs(z)
camera.location = Vector(np.array([x, y, z]))
direction = -camera.location
rot_quat = direction.to_track_quat("-Z", "Y")
camera.rotation_euler = rot_quat.to_euler()
return camera
def set_camera(direction, camera_dist=2.0, camera_offset=0.0):
camera = bpy.data.objects["Camera"]
camera_pos = -camera_dist * direction
if type(camera_offset) == float:
camera_offset = Vector(np.array([0., 0., 0.]))
camera_pos += camera_offset
camera.location = camera_pos
# https://blender.stackexchange.com/questions/5210/pointing-the-camera-in-a-particular-direction-programmatically
rot_quat = direction.to_track_quat("-Z", "Y")
camera.rotation_euler = rot_quat.to_euler()
return camera
def _set_camera_at_size(i: int, scale: float = 1.5) -> bpy.types.Object:
"""Debugging function to set the camera on the 6 faces of a cube.
Args:
i (int): Index of the face of the cube.
scale (float, optional): Scale of the cube. Defaults to 1.5.
Returns:
bpy.types.Object: The camera object.
"""
if i == 0:
x, y, z = scale, 0, 0
elif i == 1:
x, y, z = -scale, 0, 0
elif i == 2:
x, y, z = 0, scale, 0
elif i == 3:
x, y, z = 0, -scale, 0
elif i == 4:
x, y, z = 0, 0, scale
elif i == 5:
x, y, z = 0, 0, -scale
else:
raise ValueError(f"Invalid index: i={i}, must be int in range [0, 5].")
camera = bpy.data.objects["Camera"]
camera.location = Vector(np.array([x, y, z]))
direction = -camera.location
rot_quat = direction.to_track_quat("-Z", "Y")
camera.rotation_euler = rot_quat.to_euler()
return camera
def _create_light(
name: str,
light_type: Literal["POINT", "SUN", "SPOT", "AREA"],
location: Tuple[float, float, float],
rotation: Tuple[float, float, float],
energy: float,
use_shadow: bool = False,
specular_factor: float = 1.0,
):
"""Creates a light object.
Args:
name (str): Name of the light object.
light_type (Literal["POINT", "SUN", "SPOT", "AREA"]): Type of the light.
location (Tuple[float, float, float]): Location of the light.
rotation (Tuple[float, float, float]): Rotation of the light.
energy (float): Energy of the light.
use_shadow (bool, optional): Whether to use shadows. Defaults to False.
specular_factor (float, optional): Specular factor of the light. Defaults to 1.0.
Returns:
bpy.types.Object: The light object.
"""
light_data = bpy.data.lights.new(name=name, type=light_type)
light_object = bpy.data.objects.new(name, light_data)
bpy.context.collection.objects.link(light_object)
light_object.location = location
light_object.rotation_euler = rotation
light_data.use_shadow = use_shadow
light_data.specular_factor = specular_factor
light_data.energy = energy
return light_object
def reset_scene() -> None:
"""Resets the scene to a clean state.
Returns:
None
"""
# delete everything that isn't part of a camera or a light
for obj in bpy.data.objects:
if obj.type not in {"CAMERA", "LIGHT"}:
bpy.data.objects.remove(obj, do_unlink=True)
# delete all the materials
for material in bpy.data.materials:
bpy.data.materials.remove(material, do_unlink=True)
# delete all the textures
for texture in bpy.data.textures:
bpy.data.textures.remove(texture, do_unlink=True)
# delete all the images
for image in bpy.data.images:
bpy.data.images.remove(image, do_unlink=True)
# delete all the collider collections
for collider in bpy.data.collections:
if collider.name != "Collection":
bpy.data.collections.remove(collider, do_unlink=True)
def load_object(object_path: str) -> None:
"""Loads a model with a supported file extension into the scene.
Args:
object_path (str): Path to the model file.
Raises:
ValueError: If the file extension is not supported.
Returns:
None
"""
file_extension = object_path.split(".")[-1].lower()
if file_extension is None:
raise ValueError(f"Unsupported file type: {object_path}")
if file_extension == "usdz":
# install usdz io package
dirname = os.path.dirname(os.path.realpath(__file__))
usdz_package = os.path.join(dirname, "io_scene_usdz.zip")
bpy.ops.preferences.addon_install(filepath=usdz_package)
# enable it
addon_name = "io_scene_usdz"
bpy.ops.preferences.addon_enable(module=addon_name)
# import the usdz
from io_scene_usdz.import_usdz import import_usdz
import_usdz(context, filepath=object_path, materials=True, animations=True)
return None
# load from existing import functions
import_function = IMPORT_FUNCTIONS[file_extension]
if file_extension == "blend":
import_function(directory=object_path, link=False)
elif file_extension in {"glb", "gltf"}:
import_function(filepath=object_path, merge_vertices=True)
else:
import_function(filepath=object_path)
def scene_bbox(
single_obj: Optional[bpy.types.Object] = None, ignore_matrix: bool = False
) -> Tuple[Vector, Vector]:
"""Returns the bounding box of the scene.
Taken from Shap-E rendering script
(https://github.com/openai/shap-e/blob/main/shap_e/rendering/blender/blender_script.py#L68-L82)
Args:
single_obj (Optional[bpy.types.Object], optional): If not None, only computes
the bounding box for the given object. Defaults to None.
ignore_matrix (bool, optional): Whether to ignore the object's matrix. Defaults
to False.
Raises:
RuntimeError: If there are no objects in the scene.
Returns:
Tuple[Vector, Vector]: The minimum and maximum coordinates of the bounding box.
"""
bbox_min = (math.inf,) * 3
bbox_max = (-math.inf,) * 3
found = False
for obj in get_scene_meshes() if single_obj is None else [single_obj]:
found = True
for coord in obj.bound_box:
coord = Vector(coord)
if not ignore_matrix:
coord = obj.matrix_world @ coord
bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
if not found:
raise RuntimeError("no objects in scene to compute bounding box for")
return Vector(bbox_min), Vector(bbox_max)
def get_scene_root_objects() -> Generator[bpy.types.Object, None, None]:
"""Returns all root objects in the scene.
Yields:
Generator[bpy.types.Object, None, None]: Generator of all root objects in the
scene.
"""
for obj in bpy.context.scene.objects.values():
if not obj.parent:
yield obj
def get_scene_meshes() -> Generator[bpy.types.Object, None, None]:
"""Returns all meshes in the scene.
Yields:
Generator[bpy.types.Object, None, None]: Generator of all meshes in the scene.
"""
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
yield obj
def get_3x4_RT_matrix_from_blender(cam: bpy.types.Object) -> Matrix:
"""Returns the 3x4 RT matrix from the given camera.
Taken from Zero123, which in turn was taken from
https://github.com/panmari/stanford-shapenet-renderer/blob/master/render_blender.py
Args:
cam (bpy.types.Object): The camera object.
Returns:
Matrix: The 3x4 RT matrix from the given camera.
"""
# Use matrix_world instead to account for all constraints
location, rotation = cam.matrix_world.decompose()[0:2]
R_world2bcam = rotation.to_matrix().transposed()
# Use location from matrix_world to account for constraints:
T_world2bcam = -1 * R_world2bcam @ location
# put into 3x4 matrix
RT = Matrix(
(
R_world2bcam[0][:] + (T_world2bcam[0],),
R_world2bcam[1][:] + (T_world2bcam[1],),
R_world2bcam[2][:] + (T_world2bcam[2],),
)
)
return RT
def delete_invisible_objects() -> None:
"""Deletes all invisible objects in the scene.
Returns:
None
"""
bpy.ops.object.select_all(action="DESELECT")
for obj in scene.objects:
if obj.hide_viewport or obj.hide_render:
obj.hide_viewport = False
obj.hide_render = False
obj.hide_select = False
obj.select_set(True)
bpy.ops.object.delete()
# Delete invisible collections
invisible_collections = [col for col in bpy.data.collections if col.hide_viewport]
for col in invisible_collections:
bpy.data.collections.remove(col)
def normalize_scene() -> None:
"""Normalizes the scene by scaling and translating it to fit in a unit cube centered
at the origin.
Mostly taken from the Point-E / Shap-E rendering script
(https://github.com/openai/point-e/blob/main/point_e/evals/scripts/blender_script.py#L97-L112),
but fix for multiple root objects: (see bug report here:
https://github.com/openai/shap-e/pull/60).
Returns:
None
"""
if len(list(get_scene_root_objects())) > 1:
# create an empty object to be used as a parent for all root objects
parent_empty = bpy.data.objects.new("ParentEmpty", None)
bpy.context.scene.collection.objects.link(parent_empty)
# parent all root objects to the empty object
for obj in get_scene_root_objects():
if obj != parent_empty:
obj.parent = parent_empty
bbox_min, bbox_max = scene_bbox()
scale = 1 / max(bbox_max - bbox_min)
for obj in get_scene_root_objects():
obj.scale = obj.scale * scale
# Apply scale to matrix_world.
bpy.context.view_layer.update()
bbox_min, bbox_max = scene_bbox()
offset = -(bbox_min + bbox_max) / 2
for obj in get_scene_root_objects():
obj.matrix_world.translation += offset
bpy.ops.object.select_all(action="DESELECT")
# unparent the camera
bpy.data.objects["Camera"].parent = None
def delete_missing_textures() -> Dict[str, Any]:
"""Deletes all missing textures in the scene.
Returns:
Dict[str, Any]: Dictionary with keys "count", "files", and "file_path_to_color".
"count" is the number of missing textures, "files" is a list of the missing
texture file paths, and "file_path_to_color" is a dictionary mapping the
missing texture file paths to a random color.
"""
missing_file_count = 0
out_files = []
file_path_to_color = {}
# Check all materials in the scene
for material in bpy.data.materials:
if material.use_nodes:
for node in material.node_tree.nodes:
if node.type == "TEX_IMAGE":
image = node.image
if image is not None:
file_path = bpy.path.abspath(image.filepath)
if file_path == "":
# means it's embedded
continue
if not os.path.exists(file_path):
# Find the connected Principled BSDF node
connected_node = node.outputs[0].links[0].to_node
if connected_node.type == "BSDF_PRINCIPLED":
if file_path not in file_path_to_color:
# Set a random color for the unique missing file path
random_color = [random.random() for _ in range(3)]
file_path_to_color[file_path] = random_color + [1]
connected_node.inputs[
"Base Color"
].default_value = file_path_to_color[file_path]
# Delete the TEX_IMAGE node
material.node_tree.nodes.remove(node)
missing_file_count += 1
out_files.append(image.filepath)
return {
"count": missing_file_count,
"files": out_files,
"file_path_to_color": file_path_to_color,
}
def _get_random_color() -> Tuple[float, float, float, float]:
"""Generates a random RGB-A color.
The alpha value is always 1.
Returns:
Tuple[float, float, float, float]: A random RGB-A color. Each value is in the
range [0, 1].
"""
return (random.random(), random.random(), random.random(), 1)
def _apply_color_to_object(
obj: bpy.types.Object, color: Tuple[float, float, float, float]
) -> None:
"""Applies the given color to the object.
Args:
obj (bpy.types.Object): The object to apply the color to.
color (Tuple[float, float, float, float]): The color to apply to the object.
Returns:
None
"""
mat = bpy.data.materials.new(name=f"RandomMaterial_{obj.name}")
mat.use_nodes = True
nodes = mat.node_tree.nodes
principled_bsdf = nodes.get("Principled BSDF")
if principled_bsdf:
principled_bsdf.inputs["Base Color"].default_value = color
obj.data.materials.append(mat)
class MetadataExtractor:
"""Class to extract metadata from a Blender scene."""
def __init__(
self, object_path: str, scene: bpy.types.Scene, bdata: bpy.types.BlendData
) -> None:
"""Initializes the MetadataExtractor.
Args:
object_path (str): Path to the object file.
scene (bpy.types.Scene): The current scene object from `bpy.context.scene`.
bdata (bpy.types.BlendData): The current blender data from `bpy.data`.
Returns:
None
"""
self.object_path = object_path
self.scene = scene
self.bdata = bdata
def get_poly_count(self) -> int:
"""Returns the total number of polygons in the scene."""
total_poly_count = 0
for obj in self.scene.objects:
if obj.type == "MESH":
total_poly_count += len(obj.data.polygons)
return total_poly_count
def get_vertex_count(self) -> int:
"""Returns the total number of vertices in the scene."""
total_vertex_count = 0
for obj in self.scene.objects:
if obj.type == "MESH":
total_vertex_count += len(obj.data.vertices)
return total_vertex_count
def get_edge_count(self) -> int:
"""Returns the total number of edges in the scene."""
total_edge_count = 0
for obj in self.scene.objects:
if obj.type == "MESH":
total_edge_count += len(obj.data.edges)
return total_edge_count
def get_lamp_count(self) -> int:
"""Returns the number of lamps in the scene."""
return sum(1 for obj in self.scene.objects if obj.type == "LIGHT")
def get_mesh_count(self) -> int:
"""Returns the number of meshes in the scene."""
return sum(1 for obj in self.scene.objects if obj.type == "MESH")
def get_material_count(self) -> int:
"""Returns the number of materials in the scene."""
return len(self.bdata.materials)
def get_object_count(self) -> int:
"""Returns the number of objects in the scene."""
return len(self.bdata.objects)
def get_animation_count(self) -> int:
"""Returns the number of animations in the scene."""
return len(self.bdata.actions)
def get_linked_files(self) -> List[str]:
"""Returns the filepaths of all linked files."""
image_filepaths = self._get_image_filepaths()
material_filepaths = self._get_material_filepaths()
linked_libraries_filepaths = self._get_linked_libraries_filepaths()
all_filepaths = (
image_filepaths | material_filepaths | linked_libraries_filepaths
)
if "" in all_filepaths:
all_filepaths.remove("")
return list(all_filepaths)
def _get_image_filepaths(self) -> Set[str]:
"""Returns the filepaths of all images used in the scene."""
filepaths = set()
for image in self.bdata.images:
if image.source == "FILE":
filepaths.add(bpy.path.abspath(image.filepath))
return filepaths
def _get_material_filepaths(self) -> Set[str]:
"""Returns the filepaths of all images used in materials."""
filepaths = set()
for material in self.bdata.materials:
if material.use_nodes:
for node in material.node_tree.nodes:
if node.type == "TEX_IMAGE":
image = node.image
if image is not None:
filepaths.add(bpy.path.abspath(image.filepath))
return filepaths
def _get_linked_libraries_filepaths(self) -> Set[str]:
"""Returns the filepaths of all linked libraries."""
filepaths = set()
for library in self.bdata.libraries:
filepaths.add(bpy.path.abspath(library.filepath))
return filepaths
def get_scene_size(self) -> Dict[str, list]:
"""Returns the size of the scene bounds in meters."""
bbox_min, bbox_max = scene_bbox()
return {"bbox_max": list(bbox_max), "bbox_min": list(bbox_min)}
def get_shape_key_count(self) -> int:
"""Returns the number of shape keys in the scene."""
total_shape_key_count = 0
for obj in self.scene.objects:
if obj.type == "MESH":
shape_keys = obj.data.shape_keys
if shape_keys is not None:
total_shape_key_count += (
len(shape_keys.key_blocks) - 1
) # Subtract 1 to exclude the Basis shape key
return total_shape_key_count
def get_armature_count(self) -> int:
"""Returns the number of armatures in the scene."""
total_armature_count = 0
for obj in self.scene.objects:
if obj.type == "ARMATURE":
total_armature_count += 1
return total_armature_count
def read_file_size(self) -> int:
"""Returns the size of the file in bytes."""
return os.path.getsize(self.object_path)
def get_metadata(self) -> Dict[str, Any]:
"""Returns the metadata of the scene.
Returns:
Dict[str, Any]: Dictionary of the metadata with keys for "file_size",
"poly_count", "vert_count", "edge_count", "material_count", "object_count",
"lamp_count", "mesh_count", "animation_count", "linked_files", "scene_size",
"shape_key_count", and "armature_count".
"""
return {
"file_size": self.read_file_size(),
"poly_count": self.get_poly_count(),
"vert_count": self.get_vertex_count(),
"edge_count": self.get_edge_count(),
"material_count": self.get_material_count(),
"object_count": self.get_object_count(),
"lamp_count": self.get_lamp_count(),
"mesh_count": self.get_mesh_count(),
"animation_count": self.get_animation_count(),
"linked_files": self.get_linked_files(),
"scene_size": self.get_scene_size(),
"shape_key_count": self.get_shape_key_count(),
"armature_count": self.get_armature_count(),
}
def pan_camera(time, axis="Z", camera_dist=2.0, elevation=-0.1, camera_offset=0.0):
angle = time * math.pi * 2 - math.pi / 2 # start from -90 degree
direction = [-math.cos(angle), -math.sin(angle), -elevation]
assert axis in ["X", "Y", "Z"]
if axis == "X":
direction = [direction[2], *direction[:2]]
elif axis == "Y":
direction = [direction[0], -elevation, direction[1]]
direction = Vector(direction).normalized()
camera = set_camera(direction, camera_dist=camera_dist, camera_offset=camera_offset)
return camera
def pan_camera_along(time, pose="alone-x-rotate", camera_dist=2.0, rotate=0.0):
angle = time * math.pi * 2
# direction_plane = [-math.cos(angle), -math.sin(angle), 0]
x_new = math.cos(angle)
y_new = math.cos(rotate) * math.sin(angle)
z_new = math.sin(rotate) * math.sin(angle)
direction = [-x_new, -y_new, -z_new]
assert pose in ["alone-x-rotate"]
direction = Vector(direction).normalized()
camera = set_camera(direction, camera_dist=camera_dist)
return camera
def pan_camera_by_angle(angle, axis="Z", camera_dist=2.0, elevation=-0.1 ):
direction = [-math.cos(angle), -math.sin(angle), -elevation]
assert axis in ["X", "Y", "Z"]
if axis == "X":
direction = [direction[2], *direction[:2]]
elif axis == "Y":
direction = [direction[0], -elevation, direction[1]]
direction = Vector(direction).normalized()
camera = set_camera(direction, camera_dist=camera_dist)
return camera
def z_circular_custom_track(time,
camera_dist,
azimuth_shift = [-9, 9],
init_elevation = 0.0,
elevation_shift = [-5, 5]):
adjusted_azimuth = (-math.degrees(math.pi / 2) +
time * 360 +
np.random.uniform(low=azimuth_shift[0], high=azimuth_shift[1]))
# Add random noise to the elevation
adjusted_elevation = init_elevation + np.random.uniform(low=elevation_shift[0], high=elevation_shift[1])
return math.radians(adjusted_azimuth), math.radians(adjusted_elevation), camera_dist
def place_camera(time, camera_pose_mode="random", camera_dist=2.0, rotate=0.0, elevation=0.0, camera_offset=0.0, idx=0):
if camera_pose_mode == "z-circular-elevated":
cam = pan_camera(time, axis="Z", camera_dist=camera_dist, elevation=elevation, camera_offset=camera_offset)
elif camera_pose_mode == 'alone-x-rotate':
cam = pan_camera_along(time, pose=camera_pose_mode, camera_dist=camera_dist, rotate=rotate)
elif camera_pose_mode == 'z-circular-elevated-noise':
angle, elevation, camera_dist = z_circular_custom_track(time, camera_dist=camera_dist, init_elevation=elevation)
cam = pan_camera_by_angle(angle, axis="Z", camera_dist=camera_dist, elevation=elevation)
elif camera_pose_mode == 'random':
cam = randomize_camera_with_cache(radius_min=camera_dist, radius_max=camera_dist, maxz=114514., minz=-114514., idx=idx)
else:
raise ValueError(f"Unknown camera pose mode: {camera_pose_mode}")
return cam
def setup_nodes(output_path, capturing_material_alpha: bool = False):
tree = bpy.context.scene.node_tree
links = tree.links
for node in tree.nodes:
tree.nodes.remove(node)
# Helpers to perform math on links and constants.
def node_op(op: str, *args, clamp=False):
node = tree.nodes.new(type="CompositorNodeMath")
node.operation = op
if clamp:
node.use_clamp = True
for i, arg in enumerate(args):
if isinstance(arg, (int, float)):
node.inputs[i].default_value = arg
else:
links.new(arg, node.inputs[i])
return node.outputs[0]
def node_clamp(x, maximum=1.0):
return node_op("MINIMUM", x, maximum)
def node_mul(x, y, **kwargs):
return node_op("MULTIPLY", x, y, **kwargs)
input_node = tree.nodes.new(type="CompositorNodeRLayers")
input_node.scene = bpy.context.scene
input_sockets = {}
for output in input_node.outputs:
input_sockets[output.name] = output
if capturing_material_alpha:
color_socket = input_sockets["Image"]
else:
raw_color_socket = input_sockets["Image"]
# We apply sRGB here so that our fixed-point depth map and material
# alpha values are not sRGB, and so that we perform ambient+diffuse
# lighting in linear RGB space.
color_node = tree.nodes.new(type="CompositorNodeConvertColorSpace")
color_node.from_color_space = "Linear"
color_node.to_color_space = "sRGB"
tree.links.new(raw_color_socket, color_node.inputs[0])
color_socket = color_node.outputs[0]
split_node = tree.nodes.new(type="CompositorNodeSepRGBA")
tree.links.new(color_socket, split_node.inputs[0])
# Create separate file output nodes for every channel we care about.
# The process calling this script must decide how to recombine these
# channels, possibly into a single image.
for i, channel in enumerate("rgba") if not capturing_material_alpha else [(0, "MatAlpha")]:
output_node = tree.nodes.new(type="CompositorNodeOutputFile")
output_node.base_path = f"{output_path}_{channel}"
links.new(split_node.outputs[i], output_node.inputs[0])
if capturing_material_alpha:
# No need to re-write depth here.
return
depth_out = node_clamp(node_mul(input_sockets["Depth"], 1 / MAX_DEPTH))
output_node = tree.nodes.new(type="CompositorNodeOutputFile")
output_node.format.file_format = 'OPEN_EXR'
output_node.base_path = f"{output_path}_depth"
links.new(depth_out, output_node.inputs[0])
# Add normal map output
normal_out = input_sockets["Normal"]
# Scale normal by 0.5
scale_normal = tree.nodes.new(type="CompositorNodeMixRGB")
scale_normal.blend_type = 'MULTIPLY'
scale_normal.inputs[2].default_value = (0.5, 0.5, 0.5, 1)
links.new(normal_out, scale_normal.inputs[1])
# Bias normal by 0.5
bias_normal = tree.nodes.new(type="CompositorNodeMixRGB")
bias_normal.blend_type = 'ADD'
bias_normal.inputs[2].default_value = (0.5, 0.5, 0.5, 0)
links.new(scale_normal.outputs[0], bias_normal.inputs[1])
# Output the transformed normal map
normal_file_output = tree.nodes.new(type="CompositorNodeOutputFile")
normal_file_output.base_path = f"{output_path}_normal"
normal_file_output.format.file_format = 'OPEN_EXR'
links.new(bias_normal.outputs[0], normal_file_output.inputs[0])
def setup_nodes_semantic(output_path, capturing_material_alpha: bool = False):
tree = bpy.context.scene.node_tree
links = tree.links
for node in tree.nodes:
tree.nodes.remove(node)
# Helpers to perform math on links and constants.
def node_op(op: str, *args, clamp=False):
node = tree.nodes.new(type="CompositorNodeMath")
node.operation = op
if clamp:
node.use_clamp = True
for i, arg in enumerate(args):
if isinstance(arg, (int, float)):
node.inputs[i].default_value = arg
else:
links.new(arg, node.inputs[i])
return node.outputs[0]
def node_clamp(x, maximum=1.0):
return node_op("MINIMUM", x, maximum)
def node_mul(x, y, **kwargs):
return node_op("MULTIPLY", x, y, **kwargs)
input_node = tree.nodes.new(type="CompositorNodeRLayers")
input_node.scene = bpy.context.scene
input_sockets = {}
for output in input_node.outputs:
input_sockets[output.name] = output
if capturing_material_alpha:
color_socket = input_sockets["Image"]
else:
raw_color_socket = input_sockets["Image"]
# We apply sRGB here so that our fixed-point depth map and material
# alpha values are not sRGB, and so that we perform ambient+diffuse
# lighting in linear RGB space.
color_node = tree.nodes.new(type="CompositorNodeConvertColorSpace")
color_node.from_color_space = "Linear"
color_node.to_color_space = "sRGB"
tree.links.new(raw_color_socket, color_node.inputs[0])
color_socket = color_node.outputs[0]
def render_object(
object_file: str,
num_renders: int,
only_northern_hemisphere: bool,
output_dir: str,
) -> None:
"""Saves rendered images with its camera matrix and metadata of the object.
Args:
object_file (str): Path to the object file.
num_renders (int): Number of renders to save of the object.
only_northern_hemisphere (bool): Whether to only render sides of the object that
are in the northern hemisphere. This is useful for rendering objects that
are photogrammetrically scanned, as the bottom of the object often has
holes.
output_dir (str): Path to the directory where the rendered images and metadata
will be saved.
Returns:
None
"""
os.makedirs(output_dir, exist_ok=True)
# load the object
if object_file.endswith(".blend"):
bpy.ops.object.mode_set(mode="OBJECT")
reset_cameras()
delete_invisible_objects()
else:
reset_scene()
load_object(object_file)
# Set up cameras
cam = scene.objects["Camera"]
cam.data.lens = 35
cam.data.sensor_width = 32
# Set up camera constraints
cam_constraint = cam.constraints.new(type="TRACK_TO")
cam_constraint.track_axis = "TRACK_NEGATIVE_Z"
cam_constraint.up_axis = "UP_Y"
# Extract the metadata. This must be done before normalizing the scene to get
# accurate bounding box information.
metadata_extractor = MetadataExtractor(
object_path=object_file, scene=scene, bdata=bpy.data
)
metadata = metadata_extractor.get_metadata()
# delete all objects that are not meshes
if object_file.lower().endswith(".usdz") or object_file.lower().endswith(".vrm"):
# don't delete missing textures on usdz files, lots of them are embedded
missing_textures = None
else:
missing_textures = delete_missing_textures()
metadata["missing_textures"] = missing_textures
metadata["random_color"] = None
# save metadata
metadata_path = os.path.join(output_dir, "metadata.json")
os.makedirs(os.path.dirname(metadata_path), exist_ok=True)
with open(metadata_path, "w", encoding="utf-8") as f:
json.dump(metadata, f, sort_keys=True, indent=2)
# normalize the scene
normalize_scene()
# cancel edge rim lighting in vrm files
if object_file.endswith(".vrm"):
for i in bpy.data.materials:
i.vrm_addon_extension.mtoon1.extensions.vrmc_materials_mtoon.rim_lighting_mix_factor = 0.0
i.vrm_addon_extension.mtoon1.extensions.vrmc_materials_mtoon.matcap_texture.index.source = None
i.vrm_addon_extension.mtoon1.extensions.vrmc_materials_mtoon.outline_width_factor = 0.0
# rotate two arms to A-pose
if object_file.endswith(".vrm"):
armature = [ i for i in bpy.data.objects if 'Armature' in i.name ][0]
bpy.context.view_layer.objects.active = armature
bpy.ops.object.mode_set(mode='POSE')
pbone1 = armature.pose.bones['J_Bip_L_UpperArm']
pbone2 = armature.pose.bones['J_Bip_R_UpperArm']
pbone1.rotation_mode = 'XYZ'
pbone2.rotation_mode = 'XYZ'
pbone1.rotation_euler.rotate_axis('X', math.radians(-45))
pbone2.rotation_euler.rotate_axis('X', math.radians(-45))
bpy.ops.object.mode_set(mode='OBJECT')
def printInfo():
print("====== Objects ======")
for i in bpy.data.objects:
print(i.name)
print("====== Materials ======")
for i in bpy.data.materials:
print(i.name)
def parse_material():
hair_mats = []
cloth_mats = []
face_mats = []
body_mats = []
# main hair material
if 'Hair' in bpy.data.objects:
hair_mats = [i.name for i in bpy.data.objects['Hair'].data.materials if 'MToon Outline' not in i.name]
else:
flag = False
for i in bpy.data.objects:
if i.name[:4] == 'Hair' and bpy.data.objects[i.name].data:
hair_mats += [i.name for i in bpy.data.objects[i.name].data.materials if 'MToon Outline' not in i.name]
flag = True
if not flag:
if 'Hairs' in bpy.data.objects and bpy.data.objects['Hairs'].data:
hair_mats = [i.name for i in bpy.data.objects['Hairs'].data.materials if 'MToon Outline' not in i.name]
else:
for i in bpy.data.materials:
if 'HAIR' in i.name and 'MToon Outline' not in i.name:
hair_mats.append(i.name)
if len(hair_mats) == 0:
printInfo()
with open('error.txt', 'a+') as f:
f.write(object_file + '\t' + 'Cannot find main hair material\t' + str([iii.name for iii in bpy.data.objects]) + '\n')
raise ValueError("Cannot find main hair material")
# face material
if 'Face' in bpy.data.objects:
face_mats = [i.name for i in bpy.data.objects['Face'].data.materials if 'MToon Outline' not in i.name]
else:
for i in bpy.data.materials:
if 'FACE' in i.name and 'MToon Outline' not in i.name:
face_mats.append(i.name)
elif 'Face' in i.name and 'SKIN' in i.name and 'MToon Outline' not in i.name:
face_mats.append(i.name)
if len(face_mats) == 0:
printInfo()
with open('error.txt', 'a+') as f:
f.write(object_file + '\t' + 'Cannot find face material\t' + str([iii.name for iii in bpy.data.objects]) + '\n')
raise ValueError("Cannot find face material")
# loop
for i in bpy.data.materials:
if 'MToon Outline' in i.name:
continue
elif 'CLOTH' in i.name:
if 'Shoes' in i.name:
body_mats.append(i.name)
elif 'Accessory' in i.name:
if 'CatEar' in i.name:
hair_mats.append(i.name)
else:
cloth_mats.append(i.name)
elif any( name in i.name for name in ['Tops', 'Bottoms', 'Onepice'] ):
cloth_mats.append(i.name)
else:
raise ValueError(f"Unknown cloth material: {i.name}")
elif 'Body' in i.name and 'SKIN' in i.name:
body_mats.append(i.name)
elif i.name in hair_mats or i.name in face_mats:
continue
elif 'HairBack' in i.name and 'HAIR' in i.name:
hair_mats.append(i.name)
elif 'EYE' in i.name:
face_mats.append(i.name)
elif 'Face' in i.name and 'SKIN' in i.name:
face_mats.append(i.name)
else:
print("hair_mats", hair_mats)
print("cloth_mats", cloth_mats)
print("face_mats", face_mats)
print("body_mats", body_mats)
with open('error.txt', 'a+') as f:
f.write(object_file + '\t' + 'Cannot find material\t' + i.name + '\n')
raise ValueError(f"Unknown material: {i.name}")
return hair_mats, cloth_mats, face_mats, body_mats
hair_mats, cloth_mats, face_mats, body_mats = parse_material()
# get bounding box of face
def get_face_bbox():
if 'Face' in bpy.data.objects:
face = bpy.data.objects['Face']
bbox_min, bbox_max = scene_bbox(face)
return bbox_min, bbox_max
else:
bbox_min, bbox_max = scene_bbox()
for i in bpy.data.objects:
if i.data.materials and i.data.materials[0].name in face_mats:
face = i
cur_bbox_min, cur_bbox_max = scene_bbox(face)
bbox_min = np.minimum(bbox_min, cur_bbox_min)
bbox_max = np.maximum(bbox_max, cur_bbox_max)
return bbox_min, bbox_max
def assign_color(material_name, color):
material = bpy.data.materials.get(material_name)
if material:
material.vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (1, 1, 1, 1)
image = material.vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_texture.index.source
if image:
pixels = np.array(image.pixels[:])
width, height = image.size
num_channels = 4
pixels = pixels.reshape((height, width, num_channels))
srgb_pixels = np.clip(np.power(pixels, 1/2.2), 0.0, 1.0)
print("Image converted to NumPy array")
# Step 2: Edit the NumPy array
srgb_pixels[..., 0] = color[0]
srgb_pixels[..., 1] = color[1]
srgb_pixels[..., 2] = color[2]
edited_image_rgba = srgb_pixels
# Step 3: Convert the edited NumPy array back to a Blender image
edited_image_flat = edited_image_rgba.astype(np.float32)
edited_image_flat = edited_image_flat.flatten()
edited_image_name = "Edited_Texture"
edited_blender_image = bpy.data.images.new(edited_image_name, width, height, alpha=True)
edited_blender_image.pixels = edited_image_flat
material.vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_texture.index.source = edited_blender_image
print(f"Edited image assigned to {material_name}")
material.vrm_addon_extension.mtoon1.extensions.vrmc_materials_mtoon.shade_color_factor = (1, 1, 1)
image = material.vrm_addon_extension.mtoon1.extensions.vrmc_materials_mtoon.shade_multiply_texture.index.source
if image:
pixels = np.array(image.pixels[:])
width, height = image.size
num_channels = 4
pixels = pixels.reshape((height, width, num_channels))
srgb_pixels = np.clip(np.power(pixels, 1/2.2), 0.0, 1.0)
print("Image converted to NumPy array")
# Step 2: Edit the NumPy array
srgb_pixels[..., 0] = color[0]
srgb_pixels[..., 1] = color[1]
srgb_pixels[..., 2] = color[2]
edited_image_rgba = srgb_pixels
# Step 3: Convert the edited NumPy array back to a Blender image
edited_image_flat = edited_image_rgba.astype(np.float32)
edited_image_flat = edited_image_flat.flatten()
edited_image_name = "Edited_Texture"
edited_blender_image = bpy.data.images.new(edited_image_name, width, height, alpha=True)
edited_blender_image.pixels = edited_image_flat
material.vrm_addon_extension.mtoon1.extensions.vrmc_materials_mtoon.shade_multiply_texture.index.source = edited_blender_image
print(f"Edited image assigned to {material_name}")
material.vrm_addon_extension.mtoon1.extensions.khr_materials_emissive_strength.emissive_strength = 0.0
def assign_transparency(material_name, alpha):
material = bpy.data.materials.get(material_name)
if material:
material.vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (1, 1, 1, alpha)
# render the images
use_workbench = bpy.context.scene.render.engine == "BLENDER_WORKBENCH"
face_bbox_min, face_bbox_max = get_face_bbox()
face_bbox_center = (face_bbox_min + face_bbox_max) / 2
face_bbox_size = face_bbox_max - face_bbox_min
print("face_bbox_center", face_bbox_center)
print("face_bbox_size", face_bbox_size)
config_names = ["custom2", "custom_top", "custom_bottom", "custom_face", "random"]
# normal rendering
for l in range(3): # 3 levels: all; no hair; no hair and no cloth
if l == 0:
pass
elif l == 1:
for i in hair_mats:
bpy.data.materials[i].vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (0, 0, 0, 0)
elif l == 2:
for i in cloth_mats:
bpy.data.materials[i].vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (0, 0, 0, 0)
for j in range(5): # 5 track
config = configs[config_names[j]]
if "render_num" in config:
new_num_renders = config["render_num"]
else:
new_num_renders = num_renders
for i in range(new_num_renders):
camera_dist = 1.4
if config_names[j] == "custom_face":
camera_dist = 0.6
if i not in [0, 1, 2, 6, 7]:
continue
t = i / num_renders
elevation_range = config["elevation_range"]
init_elevation = elevation_range[0]
# set camera
camera = place_camera(
t,
camera_pose_mode=config["camera_pose"],
camera_dist=camera_dist,
rotate=config["rotate"],
elevation=init_elevation,
camera_offset=face_bbox_center if config_names[j] == "custom_face" else 0.0,
idx=i
)
# set camera to ortho
bpy.data.objects["Camera"].data.type = 'ORTHO'
bpy.data.objects["Camera"].data.ortho_scale = 1.2 if config_names[j] != "custom_face" else np.max(face_bbox_size) * 1.2
# render the image
render_path = os.path.join(output_dir, f"{(i + j * 100 + l * 1000):05}.png")
scene.render.filepath = render_path
setup_nodes(render_path)
bpy.ops.render.render(write_still=True)
# save camera RT matrix
rt_matrix = get_3x4_RT_matrix_from_blender(camera)
rt_matrix_path = os.path.join(output_dir, f"{(i + j * 100 + l * 1000):05}.npy")
np.save(rt_matrix_path, rt_matrix)
for channel_name in ["r", "g", "b", "a", "depth", "normal"]:
sub_dir = f"{render_path}_{channel_name}"
if channel_name in ['r', 'g', 'b']:
# remove path
shutil.rmtree(sub_dir)
continue
image_path = os.path.join(sub_dir, os.listdir(sub_dir)[0])
name, ext = os.path.splitext(render_path)
if channel_name == "a":
os.rename(image_path, f"{name}_{channel_name}.png")
elif channel_name == 'depth':
os.rename(image_path, f"{name}_{channel_name}.exr")
elif channel_name == "normal":
os.rename(image_path, f"{name}_{channel_name}.exr")
else:
os.remove(image_path)
os.removedirs(sub_dir)
# reset
for i in hair_mats:
bpy.data.materials[i].vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (1, 1, 1, 1)
for i in cloth_mats:
bpy.data.materials[i].vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (1, 1, 1, 1)
# switch to semantic rendering
for i in hair_mats:
assign_color(i, [1.0, 0.0, 0.0])
for i in cloth_mats:
assign_color(i, [0.0, 0.0, 1.0])
for i in face_mats:
assign_color(i, [0.0, 1.0, 1.0])
if any( ii in i for ii in ['Eyeline', 'Eyelash', 'Brow', 'Highlight'] ):
assign_transparency(i, 0.0)
for i in body_mats:
assign_color(i, [0.0, 1.0, 0.0])
for l in range(3): # 3 levels: all; no hair; no hair and no cloth
if l == 0:
pass
elif l == 1:
for i in hair_mats:
bpy.data.materials[i].vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (0, 0, 0, 0)
elif l == 2:
for i in cloth_mats:
bpy.data.materials[i].vrm_addon_extension.mtoon1.pbr_metallic_roughness.base_color_factor = (0, 0, 0, 0)
for j in range(5): # 5 track
config = configs[config_names[j]]
if "render_num" in config:
new_num_renders = config["render_num"]
else:
new_num_renders = num_renders
for i in range(new_num_renders):
camera_dist = 1.4
if config_names[j] == "custom_face":
camera_dist = 0.6
if i not in [0, 1, 2, 6, 7]:
continue
t = i / num_renders
elevation_range = config["elevation_range"]
init_elevation = elevation_range[0]
# set camera
camera = place_camera(
t,
camera_pose_mode=config["camera_pose"],
camera_dist=camera_dist,
rotate=config["rotate"],
elevation=init_elevation,
camera_offset=face_bbox_center if config_names[j] == "custom_face" else 0.0,
idx=i
)
# set camera to ortho
bpy.data.objects["Camera"].data.type = 'ORTHO'
bpy.data.objects["Camera"].data.ortho_scale = 1.2 if config_names[j] != "custom_face" else np.max(face_bbox_size) * 1.2
# render the image
render_path = os.path.join(output_dir, f"{(i + j * 100 + l * 1000):05}_semantic.png")
scene.render.filepath = render_path
setup_nodes_semantic(render_path)
bpy.ops.render.render(write_still=True)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--object_path",
type=str,
required=True,
help="Path to the object file",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Path to the directory where the rendered images and metadata will be saved.",
)
parser.add_argument(
"--engine",
type=str,
default="BLENDER_EEVEE",
choices=["CYCLES", "BLENDER_EEVEE"],
)
parser.add_argument(
"--only_northern_hemisphere",
action="store_true",
help="Only render the northern hemisphere of the object.",
default=False,
)
parser.add_argument(
"--num_renders",
type=int,
default=8,
help="Number of renders to save of the object.",
)
argv = sys.argv[sys.argv.index("--") + 1 :]
args = parser.parse_args(argv)
context = bpy.context
scene = context.scene
render = scene.render
# Set render settings
render.engine = args.engine
render.image_settings.file_format = "PNG"
render.image_settings.color_mode = "RGB"
render.resolution_x = 1024
render.resolution_y = 1024
render.resolution_percentage = 100
# Set EEVEE settings
scene.eevee.taa_render_samples = 64
scene.eevee.use_taa_reprojection = True
# Set cycles settings
scene.cycles.device = "GPU"
scene.cycles.samples = 128
scene.cycles.diffuse_bounces = 9
scene.cycles.glossy_bounces = 9
scene.cycles.transparent_max_bounces = 9
scene.cycles.transmission_bounces = 9
scene.cycles.filter_width = 0.01
scene.cycles.use_denoising = True
scene.render.film_transparent = True
bpy.context.preferences.addons["cycles"].preferences.get_devices()
bpy.context.preferences.addons[
"cycles"
].preferences.compute_device_type = "CUDA" # or "OPENCL"
bpy.context.scene.view_layers["ViewLayer"].use_pass_z = True
bpy.context.view_layer.use_pass_normal = True
render.image_settings.color_depth = "16"
bpy.context.scene.use_nodes = True
# Render the images
render_object(
object_file=args.object_path,
num_renders=args.num_renders,
only_northern_hemisphere=args.only_northern_hemisphere,
output_dir=args.output_dir,
)
|