Spaces:
Running
on
L40S
Running
on
L40S
File size: 20,935 Bytes
ef198e0 13973ba ef198e0 216a665 ef198e0 e82e682 13973ba ef198e0 13973ba ef198e0 216a665 e6f7ceb ef198e0 e6f7ceb ef198e0 13973ba ef198e0 c794eba 13973ba ef198e0 216a665 ef198e0 522a413 216a665 ef198e0 216a665 ef198e0 216a665 ef198e0 216a665 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
import torch
import spaces
import numpy as np
import trimesh
from PIL import Image
from typing import List
from tqdm import tqdm
from sklearn.neighbors import KDTree
from refine.func import from_py3d_mesh, get_cameras_list, make_star_cameras_orthographic, multiview_color_projection, simple_clean_mesh, to_py3d_mesh, to_pyml_mesh
from refine.opt import MeshOptimizer
from refine.render import NormalsRenderer, calc_vertex_normals
import pytorch3d
from pytorch3d.structures import Meshes
import xatlas
import cv2
def mesh_uv_wrap(vertices, faces):
if len(faces) > 50000:
raise ValueError("The mesh has more than 50,000 faces, which is not supported.")
vmapping, indices, uvs = xatlas.parametrize(vertices, faces)
return vertices[vmapping], indices, uvs
def stride_from_shape(shape):
stride = [1]
for x in reversed(shape[1:]):
stride.append(stride[-1] * x)
return list(reversed(stride))
def scatter_add_nd_with_count(input, count, indices, values, weights=None):
# input: [..., C], D dimension + C channel
# count: [..., 1], D dimension
# indices: [N, D], long
# values: [N, C]
D = indices.shape[-1]
C = input.shape[-1]
size = input.shape[:-1]
stride = stride_from_shape(size)
assert len(size) == D
input = input.view(-1, C) # [HW, C]
count = count.view(-1, 1)
flatten_indices = (indices * torch.tensor(stride,
dtype=torch.long, device=indices.device)).sum(-1) # [N]
if weights is None:
weights = torch.ones_like(values[..., :1])
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values)
count.scatter_add_(0, flatten_indices.unsqueeze(1), weights)
return input.view(*size, C), count.view(*size, 1)
def linear_grid_put_2d(H, W, coords, values, return_count=False):
# coords: [N, 2], float in [0, 1]
# values: [N, C]
C = values.shape[-1]
indices = coords * torch.tensor(
[H - 1, W - 1], dtype=torch.float32, device=coords.device
)
indices_00 = indices.floor().long() # [N, 2]
indices_00[:, 0].clamp_(0, H - 2)
indices_00[:, 1].clamp_(0, W - 2)
indices_01 = indices_00 + torch.tensor(
[0, 1], dtype=torch.long, device=indices.device
)
indices_10 = indices_00 + torch.tensor(
[1, 0], dtype=torch.long, device=indices.device
)
indices_11 = indices_00 + torch.tensor(
[1, 1], dtype=torch.long, device=indices.device
)
h = indices[..., 0] - indices_00[..., 0].float()
w = indices[..., 1] - indices_00[..., 1].float()
w_00 = (1 - h) * (1 - w)
w_01 = (1 - h) * w
w_10 = h * (1 - w)
w_11 = h * w
result = torch.zeros(H, W, C, device=values.device,
dtype=values.dtype) # [H, W, C]
count = torch.zeros(H, W, 1, device=values.device,
dtype=values.dtype) # [H, W, 1]
weights = torch.ones_like(values[..., :1]) # [N, 1]
result, count = scatter_add_nd_with_count(
result, count, indices_00, values * w_00.unsqueeze(1), weights * w_00.unsqueeze(1))
result, count = scatter_add_nd_with_count(
result, count, indices_01, values * w_01.unsqueeze(1), weights * w_01.unsqueeze(1))
result, count = scatter_add_nd_with_count(
result, count, indices_10, values * w_10.unsqueeze(1), weights * w_10.unsqueeze(1))
result, count = scatter_add_nd_with_count(
result, count, indices_11, values * w_11.unsqueeze(1), weights * w_11.unsqueeze(1))
if return_count:
return result, count
mask = (count.squeeze(-1) > 0)
result[mask] = result[mask] / count[mask].repeat(1, C)
return result, count.squeeze(-1) == 0
def remove_color(arr):
if arr.shape[-1] == 4:
arr = arr[..., :3]
# calc diffs
base = arr[0, 0]
diffs = np.abs(arr.astype(np.int32) - base.astype(np.int32)).sum(axis=-1)
alpha = (diffs <= 80)
arr[alpha] = 255
alpha = ~alpha
arr = np.concatenate([arr, alpha[..., None].astype(np.int32) * 255], axis=-1)
return arr
def simple_remove(imgs):
"""Only works for normal"""
if not isinstance(imgs, list):
imgs = [imgs]
single_input = True
else:
single_input = False
rets = []
for img in imgs:
arr = np.array(img)
arr = remove_color(arr)
rets.append(Image.fromarray(arr.astype(np.uint8)))
if single_input:
return rets[0]
return rets
def erode_alpha(img_list):
out_img_list = []
for idx, img in enumerate(img_list):
arr = np.array(img)
alpha = (arr[:, :, 3] > 127).astype(np.uint8)
# erode 1px
import cv2
alpha = cv2.erode(alpha, np.ones((3, 3), np.uint8), iterations=1)
alpha = (alpha * 255).astype(np.uint8)
img = Image.fromarray(np.concatenate([arr[:, :, :3], alpha[:, :, None]], axis=-1))
out_img_list.append(img)
return out_img_list
def merge_small_faces(mesh, thres=1e-5):
area_faces = mesh.area_faces
small_faces = area_faces < thres
vertices = mesh.vertices
faces = mesh.faces
new_vertices = vertices.tolist()
vertex_mapping = {}
for face_idx in np.where(small_faces)[0]:
face = faces[face_idx]
v1, v2, v3 = face
center = np.mean(vertices[face], axis=0)
new_vertex_idx = len(new_vertices)
new_vertices.append(center)
vertex_mapping[v1] = new_vertex_idx
vertex_mapping[v2] = new_vertex_idx
vertex_mapping[v3] = new_vertex_idx
for k,v in vertex_mapping.items():
faces[faces == k] = v
faces = faces[~small_faces]
new_mesh = trimesh.Trimesh(vertices=new_vertices, faces=faces, postprocess=False)
new_mesh.remove_unreferenced_vertices()
new_mesh.remove_degenerate_faces()
new_mesh.remove_duplicate_faces()
return new_mesh
def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"):
# Convert the background color to a PyTorch tensor
new_bkgd = torch.tensor(new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device)
# Convert all images to PyTorch tensors and process them
imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32)) for img in img_pils]).to(device) / 255
img_nps = imgs[..., :3]
alpha_nps = imgs[..., 3]
ori_bkgds = img_nps[:, :1, :1]
# Avoid divide by zero and calculate the original image
alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1)
ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))) / alpha_nps_clamp.unsqueeze(-1)
ori_img_nps = torch.clamp(ori_img_nps, 0, 1)
img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05, ori_img_nps * alpha_nps.unsqueeze(-1) + new_bkgd * (1 - alpha_nps.unsqueeze(-1)), new_bkgd)
rgba_img_np = torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1)
return rgba_img_np
def reconstruct_stage1(pils: List[Image.Image], steps=100, vertices=None, faces=None, fixed_v=None, fixed_f=None, lr=0.03, start_edge_len=0.15, end_edge_len=0.005,
decay=0.995, loss_expansion_weight=0.1, gain=0.1, remesh_interval=1, remesh_start=0, distract_mask=None, distract_bbox=None):
vertices, faces = vertices.cuda(), faces.cuda()
assert len(pils) == 6
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
mv = mv[[4, 3, 2, 0, 6, 5]]
renderer = NormalsRenderer(mv,proj,list(pils[0].size))
target_images = init_target(pils, new_bkgd=(0., 0., 0.))
# init from coarse mesh
opt = MeshOptimizer(vertices, faces, local_edgelen=False, gain=gain, edge_len_lims=(end_edge_len, start_edge_len), lr=lr,
remesh_interval=remesh_interval, remesh_start=remesh_start)
_vertices = opt.vertices
_faces = opt.faces
if fixed_v is not None and fixed_f is not None:
kdtree = KDTree(fixed_v.cpu().numpy())
mask = target_images[..., -1] < 0.5
for i in tqdm(range(steps)):
faces = torch.cat([_faces, fixed_f + len(_vertices)], dim=0) if fixed_f is not None else _faces
vertices = torch.cat([_vertices, fixed_v], dim=0) if fixed_v is not None else _vertices
opt.zero_grad()
opt._lr *= decay
normals = calc_vertex_normals(vertices,faces)
normals[:, 0] *= -1
normals[:, 2] *= -1
images = renderer.render(vertices,normals,faces)
loss_expand = 0.5 * ((vertices+normals).detach() - vertices).pow(2).mean()
t_mask = images[..., -1] > 0.5
loss_target_l2 = (images[t_mask] - target_images[t_mask]).abs().pow(2).mean()
loss_alpha_target_mask_l2 = (images[..., -1][mask] - target_images[..., -1][mask]).pow(2).mean()
loss = loss_target_l2 + loss_alpha_target_mask_l2 + loss_expand * loss_expansion_weight
if distract_mask is not None:
hair_visible_normals = normals
hair_visible_normals[len(_vertices):] = -1.
_images = renderer.render(vertices,hair_visible_normals,faces)
loss_distract = (_images[0][distract_mask] - target_images[0][distract_mask]).pow(2).mean()
target_outside = target_images[0][..., :3].clone()
target_outside[~distract_mask] = 0.
loss_outside_distract = (_images[0][..., :3][~distract_mask] - target_outside[..., :3][~distract_mask]).pow(2).mean()
loss = loss + loss_distract * 1. + loss_outside_distract * 10.
if fixed_v is not None and fixed_f is not None:
_, idx = kdtree.query(_vertices.detach().cpu().numpy(), k=1)
idx = idx.squeeze()
anchors = fixed_v[idx].detach()
normals_fixed = calc_vertex_normals(fixed_v, fixed_f)
loss_anchor = (torch.clamp(((anchors - _vertices) * normals_fixed[idx]).sum(-1), min=-0)+0).pow(3)
loss_anchor_dist_mask = (anchors - _vertices).norm(dim=-1) < 0.05
loss_anchor = loss_anchor[loss_anchor_dist_mask].mean()
loss = loss + loss_anchor * 100.
# out of box
loss_oob = (vertices.abs() > 0.99).float().mean() * 10
loss = loss + loss_oob
loss.backward()
opt.step()
if i % remesh_interval == 0 and i >= remesh_start:
_vertices,_faces = opt.remesh(poisson=False)
vertices, faces = opt._vertices.detach(), opt._faces.detach()
return vertices, faces
def run_mesh_refine(vertices, faces, pils: List[Image.Image], fixed_v=None, fixed_f=None, steps=100, start_edge_len=0.02, end_edge_len=0.005,
decay=0.99, update_normal_interval=10, update_warmup=10, return_mesh=True, process_inputs=True, process_outputs=True, remesh_interval=20):
poission_steps = []
assert len(pils) == 6
mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
mv = mv[[4, 3, 2, 0, 6, 5]]
renderer = NormalsRenderer(mv,proj,list(pils[0].size))
target_images = init_target(pils, new_bkgd=(0., 0., 0.)) # 4s
# init from coarse mesh
opt = MeshOptimizer(vertices, faces, ramp=5, edge_len_lims=(end_edge_len, start_edge_len), local_edgelen=False, laplacian_weight=0.02)
_vertices = opt.vertices
_faces = opt.faces
alpha_init = None
mask = target_images[..., -1] < 0.5
for i in tqdm(range(steps)):
faces = torch.cat([_faces, fixed_f + len(_vertices)], dim=0) if fixed_f is not None else _faces
vertices = torch.cat([_vertices, fixed_v], dim=0) if fixed_v is not None else _vertices
opt.zero_grad()
opt._lr *= decay
normals = calc_vertex_normals(vertices,faces)
images = renderer.render(vertices,normals,faces)
if alpha_init is None:
alpha_init = images.detach()
if i < update_warmup or i % update_normal_interval == 0:
with torch.no_grad():
py3d_mesh = to_py3d_mesh(vertices, faces, normals)
cameras = get_cameras_list(azim_list = [180, 225, 270, 0, 90, 135], device=vertices.device, focal=1/1.2)
_, _, target_normal = from_py3d_mesh(multiview_color_projection(py3d_mesh, pils, cameras_list=cameras, weights=[2,0.8,0.8,2,0.8,0.8], confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy='original', reweight_with_cosangle='linear'))
target_normal = target_normal * 2 - 1
target_normal = torch.nn.functional.normalize(target_normal, dim=-1)
target_normal[:, 0] *= -1
target_normal[:, 2] *= -1
debug_images = renderer.render(vertices,target_normal,faces)
d_mask = images[..., -1] > 0.5
loss_debug_l2 = (images[..., :3][d_mask] - debug_images[..., :3][d_mask]).pow(2).mean()
loss_alpha_target_mask_l2 = (images[..., -1][mask] - target_images[..., -1][mask]).pow(2).mean()
loss = loss_debug_l2 + loss_alpha_target_mask_l2
# out of box
loss_oob = (vertices.abs() > 0.99).float().mean() * 10
loss = loss + loss_oob
loss.backward()
opt.step()
if i % remesh_interval == 0:
_vertices,_faces = opt.remesh(poisson=(i in poission_steps))
vertices, faces = opt._vertices.detach(), opt._faces.detach()
if process_outputs:
vertices = vertices / 2 * 1.35
vertices[..., [0, 2]] = - vertices[..., [0, 2]]
return vertices, faces
def geo_refine(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=0.1, fixed_v=None, fixed_f=None,
distract_mask=None, distract_bbox=None, thres=3e-6, no_decompose=False):
print(mesh_v.device, mesh_f.device)
if fixed_v is not None:
print('fixed_v', fixed_v.shape, fixed_v.device)
if fixed_f is not None:
print('fixed_f', fixed_f.shape, fixed_f.device)
vertices, faces = geo_refine_1(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=expansion_weight, fixed_v=fixed_v, fixed_f=fixed_f,
distract_mask=distract_mask, distract_bbox=distract_bbox, thres=thres, no_decompose=no_decompose)
vertices, faces = geo_refine_2(vertices, faces, fixed_v=fixed_v)
return geo_refine_3(vertices, faces, rgb_ls, fixed_v=fixed_v, fixed_f=fixed_f, distract_mask=distract_mask)
def geo_refine_1(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=0.1, fixed_v=None, fixed_f=None,
distract_mask=None, distract_bbox=None, thres=3e-6, no_decompose=False):
rm_normals = simple_remove(normal_ls)
# transfer the alpha channel of rm_normals to img_list
for idx, img in enumerate(rm_normals):
rgb_ls[idx] = Image.fromarray(np.concatenate([np.array(rgb_ls[idx])[..., :3], np.array(img)[:, :, 3:4]], axis=-1))
assert np.mean(np.array(rgb_ls[0])[..., 3]) < 250
rgb_ls = erode_alpha(rgb_ls)
stage1_lr = 0.08 if fixed_v is None else 0.01
stage1_remesh_interval = 1 if fixed_v is None else 30
if no_decompose:
stage1_lr = 0.03
stage1_remesh_interval = 30
if fixed_v is not None:
return mesh_v, mesh_f
vertices, faces = reconstruct_stage1(rm_normals, steps=200, vertices=mesh_v, faces=mesh_f, fixed_v=fixed_v, fixed_f=fixed_f,
lr=stage1_lr, remesh_interval=stage1_remesh_interval, start_edge_len=0.04,
end_edge_len=0.010, gain=0.05, loss_expansion_weight=expansion_weight,
distract_mask=distract_mask, distract_bbox=distract_bbox)
vertices, faces = run_mesh_refine(vertices, faces, rm_normals, fixed_v=fixed_v, fixed_f=fixed_f, steps=100, start_edge_len=0.010, end_edge_len=0.001,
decay=0.99, update_normal_interval=20, update_warmup=5, process_inputs=False, process_outputs=False, remesh_interval=1)
return vertices, faces
def geo_refine_2(vertices, faces, fixed_v=None):
meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=2, apply_sub_divide=False, sub_divide_threshold=0.25)
simp_vertices, simp_faces = meshes.verts_packed(), meshes.faces_packed()
vertices, faces = simp_vertices.detach().cpu().numpy(), simp_faces.detach().cpu().numpy()
# vertices, faces = trimesh.remesh.subdivide(vertices, faces)
return vertices, faces
def geo_refine_3(vertices_, faces_, rgb_ls, fixed_v=None, fixed_f=None, distract_mask=None):
# vertices, faces, uvs = mesh_uv_wrap(vertices_, faces_)
vmapping, indices, uvs = xatlas.parametrize(vertices_, faces_)
vertices, faces = vertices_[vmapping], indices
def subdivide(vertices, faces, uvs):
vertices, faces = trimesh.remesh.subdivide(
vertices=np.hstack((vertices, uvs.copy())),
faces=faces
)
return vertices[:, :3], faces, vertices[:, 3:]
if fixed_v is not None:
dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(vertices, faces, uvs)
dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs)
# dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs)
dense_vertices, dense_faces = trimesh.remesh.subdivide(vertices_, faces_)
dense_vertices, dense_faces = trimesh.remesh.subdivide(dense_vertices, dense_faces)
# dense_vertices, dense_faces = trimesh.remesh.subdivide(dense_vertices, dense_faces)
else:
dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(vertices, faces, uvs)
dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs)
dense_vertices, dense_faces = trimesh.remesh.subdivide(vertices_, faces_)
dense_vertices, dense_faces = trimesh.remesh.subdivide(dense_vertices, dense_faces)
origin_len_v, origin_len_f = len(dense_vertices), len(dense_faces)
# concatenate fixed_v and fixed_f
if fixed_v is not None and fixed_f is not None:
dense_vertices, dense_faces = np.concatenate([dense_vertices, fixed_v.detach().cpu().numpy()], axis=0), np.concatenate([dense_faces, fixed_f.detach().cpu().numpy() + len(dense_vertices)], axis=0)
dense_vertices, dense_faces = torch.from_numpy(dense_vertices).cuda(), torch.from_numpy(dense_faces.astype('int32')).cuda()
# reconstruct meshes
meshes = Meshes(verts=[dense_vertices], faces=[dense_faces], textures=pytorch3d.renderer.mesh.textures.TexturesVertex([torch.zeros_like(dense_vertices).float()]))
new_meshes = multiview_color_projection(meshes, rgb_ls, resolution=1024, device="cuda", complete_unseen=True, confidence_threshold=0.2, cameras_list = get_cameras_list([180, 225, 270, 0, 90, 135], "cuda", focal=1/1.2), weights=[2.0, 0.5, 0.0, 1.0, 0.0, 0.5] if distract_mask is None else [2.0, 0.0, 0.5, 1.0, 0.5, 0.0], distract_mask=distract_mask)
if fixed_v is not None and fixed_f is not None:
dense_vertices = dense_vertices[:origin_len_v]
dense_faces = dense_faces[:origin_len_f]
textures = new_meshes.textures.verts_features_packed()[:origin_len_v]
else:
textures = new_meshes.textures.verts_features_packed()
# distances = torch.cdist(torch.tensor(dense_atlas_vertices).cuda(), torch.tensor(dense_vertices).cuda())
# nearest_indices = torch.argmin(distances, dim=1)
# atlas_textures = textures[nearest_indices]
chunk_size = 500
atlas_textures_chunks = []
for i in range(0, len(dense_atlas_vertices), chunk_size):
chunk = dense_atlas_vertices[i:i+chunk_size]
distances = torch.cdist(torch.tensor(chunk).cuda(), torch.tensor(dense_vertices).cuda())
nearest_indices = torch.argmin(distances, dim=1)
atlas_textures_chunks.append(textures[nearest_indices])
atlas_textures = torch.cat(atlas_textures_chunks, dim=0)
dense_atlas_uvs = torch.tensor(dense_atlas_uvs, dtype=torch.float32).cuda()
tex_img, mask = linear_grid_put_2d(1024, 1024, dense_atlas_uvs, atlas_textures)
tex_img, mask = tex_img.cpu().numpy(), mask.cpu().numpy()
tex_img = cv2.inpaint((tex_img * 255).astype(np.uint8), (mask*255).astype('uint8'), 3, cv2.INPAINT_NS)
tex_img = Image.fromarray(np.transpose(tex_img,(1,0,2))[::-1])
mesh = trimesh.Trimesh(vertices, faces, process=False)
# material = trimesh.visual.texture.SimpleMaterial(image=tex_img, diffuse=(255, 255, 255))
material = trimesh.visual.material.PBRMaterial(
roughnessFactor=1.0,
baseColorTexture=tex_img,
baseColorFactor=np.array([255, 255, 255, 255], dtype=np.uint8)
)
texture_visuals = trimesh.visual.TextureVisuals(uv=uvs, image=tex_img, material=material)
mesh.visual = texture_visuals
return mesh, torch.tensor(vertices).cuda(), torch.tensor(faces.astype('int64')).cuda()
|