File size: 20,935 Bytes
ef198e0
13973ba
ef198e0
 
 
 
 
 
 
 
 
 
 
 
 
216a665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef198e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e82e682
 
 
 
 
13973ba
 
 
 
 
 
 
 
ef198e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13973ba
 
 
ef198e0
 
216a665
e6f7ceb
ef198e0
 
e6f7ceb
ef198e0
13973ba
 
 
 
ef198e0
 
c794eba
13973ba
ef198e0
216a665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef198e0
 
522a413
216a665
ef198e0
216a665
ef198e0
216a665
ef198e0
216a665
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import torch
import spaces
import numpy as np
import trimesh
from PIL import Image
from typing import List
from tqdm import tqdm
from sklearn.neighbors import KDTree

from refine.func import from_py3d_mesh, get_cameras_list, make_star_cameras_orthographic, multiview_color_projection, simple_clean_mesh, to_py3d_mesh, to_pyml_mesh
from refine.opt import MeshOptimizer
from refine.render import NormalsRenderer, calc_vertex_normals

import pytorch3d
from pytorch3d.structures import Meshes
import xatlas
import cv2


def mesh_uv_wrap(vertices, faces):
    if len(faces) > 50000:
        raise ValueError("The mesh has more than 50,000 faces, which is not supported.")

    vmapping, indices, uvs = xatlas.parametrize(vertices, faces)
    return vertices[vmapping], indices, uvs


def stride_from_shape(shape):
    stride = [1]
    for x in reversed(shape[1:]):
        stride.append(stride[-1] * x)
    return list(reversed(stride))

def scatter_add_nd_with_count(input, count, indices, values, weights=None):
    # input: [..., C], D dimension + C channel
    # count: [..., 1], D dimension
    # indices: [N, D], long
    # values: [N, C]

    D = indices.shape[-1]
    C = input.shape[-1]
    size = input.shape[:-1]
    stride = stride_from_shape(size)

    assert len(size) == D

    input = input.view(-1, C)  # [HW, C]
    count = count.view(-1, 1)

    flatten_indices = (indices * torch.tensor(stride,
                                              dtype=torch.long, device=indices.device)).sum(-1)  # [N]

    if weights is None:
        weights = torch.ones_like(values[..., :1])

    input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values)
    count.scatter_add_(0, flatten_indices.unsqueeze(1), weights)

    return input.view(*size, C), count.view(*size, 1)


def linear_grid_put_2d(H, W, coords, values, return_count=False):
    # coords: [N, 2], float in [0, 1]
    # values: [N, C]

    C = values.shape[-1]

    indices = coords * torch.tensor(
        [H - 1, W - 1], dtype=torch.float32, device=coords.device
    )
    indices_00 = indices.floor().long()  # [N, 2]
    indices_00[:, 0].clamp_(0, H - 2)
    indices_00[:, 1].clamp_(0, W - 2)
    indices_01 = indices_00 + torch.tensor(
        [0, 1], dtype=torch.long, device=indices.device
    )
    indices_10 = indices_00 + torch.tensor(
        [1, 0], dtype=torch.long, device=indices.device
    )
    indices_11 = indices_00 + torch.tensor(
        [1, 1], dtype=torch.long, device=indices.device
    )

    h = indices[..., 0] - indices_00[..., 0].float()
    w = indices[..., 1] - indices_00[..., 1].float()
    w_00 = (1 - h) * (1 - w)
    w_01 = (1 - h) * w
    w_10 = h * (1 - w)
    w_11 = h * w

    result = torch.zeros(H, W, C, device=values.device,
                         dtype=values.dtype)  # [H, W, C]
    count = torch.zeros(H, W, 1, device=values.device,
                        dtype=values.dtype)  # [H, W, 1]
    weights = torch.ones_like(values[..., :1])  # [N, 1]

    result, count = scatter_add_nd_with_count(
        result, count, indices_00, values * w_00.unsqueeze(1), weights * w_00.unsqueeze(1))
    result, count = scatter_add_nd_with_count(
        result, count, indices_01, values * w_01.unsqueeze(1), weights * w_01.unsqueeze(1))
    result, count = scatter_add_nd_with_count(
        result, count, indices_10, values * w_10.unsqueeze(1), weights * w_10.unsqueeze(1))
    result, count = scatter_add_nd_with_count(
        result, count, indices_11, values * w_11.unsqueeze(1), weights * w_11.unsqueeze(1))

    if return_count:
        return result, count

    mask = (count.squeeze(-1) > 0)
    result[mask] = result[mask] / count[mask].repeat(1, C)

    return result, count.squeeze(-1) == 0


def remove_color(arr):
    if arr.shape[-1] == 4:
        arr = arr[..., :3]
    # calc diffs
    base = arr[0, 0]
    diffs = np.abs(arr.astype(np.int32) - base.astype(np.int32)).sum(axis=-1)
    alpha = (diffs <= 80)
    
    arr[alpha] = 255
    alpha = ~alpha
    arr = np.concatenate([arr, alpha[..., None].astype(np.int32) * 255], axis=-1)
    return arr


def simple_remove(imgs):
    """Only works for normal"""
    if not isinstance(imgs, list):
        imgs = [imgs]
        single_input = True
    else:
        single_input = False
    rets = []
    for img in imgs:
        arr = np.array(img)
        arr = remove_color(arr)
        rets.append(Image.fromarray(arr.astype(np.uint8)))
    if single_input:
        return rets[0]
    return rets


def erode_alpha(img_list):
    out_img_list = []
    for idx, img in enumerate(img_list):
        arr = np.array(img)
        alpha = (arr[:, :, 3] > 127).astype(np.uint8)
        # erode 1px
        import cv2
        alpha = cv2.erode(alpha, np.ones((3, 3), np.uint8), iterations=1)
        alpha = (alpha * 255).astype(np.uint8)
        img = Image.fromarray(np.concatenate([arr[:, :, :3], alpha[:, :, None]], axis=-1))
        out_img_list.append(img)
    return out_img_list


def merge_small_faces(mesh, thres=1e-5):
    area_faces = mesh.area_faces
    small_faces = area_faces < thres

    vertices = mesh.vertices
    faces = mesh.faces

    new_vertices = vertices.tolist()
    vertex_mapping = {}
    
    for face_idx in np.where(small_faces)[0]:
        face = faces[face_idx]
        v1, v2, v3 = face
        center = np.mean(vertices[face], axis=0)

        new_vertex_idx = len(new_vertices)
        new_vertices.append(center)

        vertex_mapping[v1] = new_vertex_idx
        vertex_mapping[v2] = new_vertex_idx
        vertex_mapping[v3] = new_vertex_idx

    for k,v in vertex_mapping.items():
        faces[faces == k] = v

    faces = faces[~small_faces]

    new_mesh = trimesh.Trimesh(vertices=new_vertices, faces=faces, postprocess=False)
    new_mesh.remove_unreferenced_vertices()
    new_mesh.remove_degenerate_faces()
    new_mesh.remove_duplicate_faces()
    
    return new_mesh


def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"):
    # Convert the background color to a PyTorch tensor
    new_bkgd = torch.tensor(new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device)
    
    # Convert all images to PyTorch tensors and process them
    imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32)) for img in img_pils]).to(device) / 255
    img_nps = imgs[..., :3]
    alpha_nps = imgs[..., 3]
    ori_bkgds = img_nps[:, :1, :1]
    
    # Avoid divide by zero and calculate the original image
    alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1)
    ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))) / alpha_nps_clamp.unsqueeze(-1)
    ori_img_nps = torch.clamp(ori_img_nps, 0, 1)
    img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05, ori_img_nps * alpha_nps.unsqueeze(-1) + new_bkgd * (1 - alpha_nps.unsqueeze(-1)), new_bkgd)

    rgba_img_np = torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1)
    return rgba_img_np


def reconstruct_stage1(pils: List[Image.Image], steps=100, vertices=None, faces=None, fixed_v=None, fixed_f=None, lr=0.03, start_edge_len=0.15, end_edge_len=0.005,
                       decay=0.995, loss_expansion_weight=0.1, gain=0.1, remesh_interval=1, remesh_start=0, distract_mask=None, distract_bbox=None):
    vertices, faces = vertices.cuda(), faces.cuda()
    assert len(pils) == 6
    mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
    mv = mv[[4, 3, 2, 0, 6, 5]]
    renderer = NormalsRenderer(mv,proj,list(pils[0].size))

    target_images = init_target(pils, new_bkgd=(0., 0., 0.))

    # init from coarse mesh
    opt = MeshOptimizer(vertices, faces, local_edgelen=False, gain=gain, edge_len_lims=(end_edge_len, start_edge_len), lr=lr,
                        remesh_interval=remesh_interval, remesh_start=remesh_start)

    _vertices = opt.vertices
    _faces = opt.faces

    if fixed_v is not None and fixed_f is not None:
        kdtree = KDTree(fixed_v.cpu().numpy())

    mask = target_images[..., -1] < 0.5

    for i in tqdm(range(steps)):
        faces = torch.cat([_faces, fixed_f + len(_vertices)], dim=0) if fixed_f is not None else _faces
        vertices = torch.cat([_vertices, fixed_v], dim=0) if fixed_v is not None else _vertices

        opt.zero_grad()
        opt._lr *= decay
        normals = calc_vertex_normals(vertices,faces)

        normals[:, 0] *= -1
        normals[:, 2] *= -1

        images = renderer.render(vertices,normals,faces)
        loss_expand = 0.5 * ((vertices+normals).detach() - vertices).pow(2).mean()
        
        t_mask = images[..., -1] > 0.5
        loss_target_l2 = (images[t_mask] - target_images[t_mask]).abs().pow(2).mean()
        loss_alpha_target_mask_l2 = (images[..., -1][mask] - target_images[..., -1][mask]).pow(2).mean()
        
        loss = loss_target_l2 + loss_alpha_target_mask_l2 + loss_expand * loss_expansion_weight

        if distract_mask is not None:
            hair_visible_normals = normals
            hair_visible_normals[len(_vertices):] = -1.
            _images = renderer.render(vertices,hair_visible_normals,faces)
            loss_distract = (_images[0][distract_mask] - target_images[0][distract_mask]).pow(2).mean()

            target_outside = target_images[0][..., :3].clone()
            target_outside[~distract_mask] = 0.

            loss_outside_distract = (_images[0][..., :3][~distract_mask] - target_outside[..., :3][~distract_mask]).pow(2).mean()

            loss = loss + loss_distract * 1. + loss_outside_distract * 10.

        if fixed_v is not None and fixed_f is not None:
            _, idx = kdtree.query(_vertices.detach().cpu().numpy(), k=1)
            idx = idx.squeeze()
            anchors = fixed_v[idx].detach()

            normals_fixed = calc_vertex_normals(fixed_v, fixed_f)
            loss_anchor = (torch.clamp(((anchors - _vertices) * normals_fixed[idx]).sum(-1), min=-0)+0).pow(3)
            loss_anchor_dist_mask = (anchors - _vertices).norm(dim=-1) < 0.05
            loss_anchor = loss_anchor[loss_anchor_dist_mask].mean()

            loss = loss + loss_anchor * 100.
        
        # out of box
        loss_oob = (vertices.abs() > 0.99).float().mean() * 10
        loss = loss + loss_oob

        loss.backward()
        opt.step()

        if i % remesh_interval == 0 and i >= remesh_start:
            _vertices,_faces = opt.remesh(poisson=False)

    vertices, faces = opt._vertices.detach(), opt._faces.detach()
    
    return vertices, faces


def run_mesh_refine(vertices, faces, pils: List[Image.Image], fixed_v=None, fixed_f=None, steps=100, start_edge_len=0.02, end_edge_len=0.005,
                    decay=0.99, update_normal_interval=10, update_warmup=10, return_mesh=True, process_inputs=True, process_outputs=True, remesh_interval=20):
    poission_steps = []

    assert len(pils) == 6
    mv, proj = make_star_cameras_orthographic(8, 1, r=1.2)
    mv = mv[[4, 3, 2, 0, 6, 5]]        
    renderer = NormalsRenderer(mv,proj,list(pils[0].size))

    target_images = init_target(pils, new_bkgd=(0., 0., 0.)) # 4s

    # init from coarse mesh
    opt = MeshOptimizer(vertices, faces, ramp=5, edge_len_lims=(end_edge_len, start_edge_len), local_edgelen=False, laplacian_weight=0.02)

    _vertices = opt.vertices
    _faces = opt.faces
    alpha_init = None

    mask = target_images[..., -1] < 0.5

    for i in tqdm(range(steps)):
        faces = torch.cat([_faces, fixed_f + len(_vertices)], dim=0) if fixed_f is not None else _faces
        vertices = torch.cat([_vertices, fixed_v], dim=0) if fixed_v is not None else _vertices

        opt.zero_grad()
        opt._lr *= decay
        normals = calc_vertex_normals(vertices,faces)
        images = renderer.render(vertices,normals,faces)
        if alpha_init is None:
            alpha_init = images.detach()
        
        if i < update_warmup or i % update_normal_interval == 0:
            with torch.no_grad():
                py3d_mesh = to_py3d_mesh(vertices, faces, normals)
                cameras = get_cameras_list(azim_list = [180, 225, 270, 0, 90, 135], device=vertices.device, focal=1/1.2)
                _, _, target_normal = from_py3d_mesh(multiview_color_projection(py3d_mesh, pils, cameras_list=cameras, weights=[2,0.8,0.8,2,0.8,0.8], confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy='original', reweight_with_cosangle='linear'))
                target_normal = target_normal * 2 - 1
                target_normal = torch.nn.functional.normalize(target_normal, dim=-1)

                target_normal[:, 0] *= -1
                target_normal[:, 2] *= -1

                debug_images = renderer.render(vertices,target_normal,faces)
        
        d_mask = images[..., -1] > 0.5
        loss_debug_l2 = (images[..., :3][d_mask] - debug_images[..., :3][d_mask]).pow(2).mean()
        
        loss_alpha_target_mask_l2 = (images[..., -1][mask] - target_images[..., -1][mask]).pow(2).mean()
        
        loss = loss_debug_l2 + loss_alpha_target_mask_l2
        
        # out of box
        loss_oob = (vertices.abs() > 0.99).float().mean() * 10
        loss = loss + loss_oob
        
        loss.backward()
        opt.step()
        
        if i % remesh_interval == 0:
            _vertices,_faces = opt.remesh(poisson=(i in poission_steps))

    vertices, faces = opt._vertices.detach(), opt._faces.detach()
    
    if process_outputs:
        vertices = vertices / 2 * 1.35
        vertices[..., [0, 2]] = - vertices[..., [0, 2]]

    return vertices, faces


def geo_refine(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=0.1, fixed_v=None, fixed_f=None,
               distract_mask=None, distract_bbox=None, thres=3e-6, no_decompose=False):
    print(mesh_v.device, mesh_f.device)
    if fixed_v is not None:
        print('fixed_v', fixed_v.shape, fixed_v.device)
    if fixed_f is not None:
        print('fixed_f', fixed_f.shape, fixed_f.device)
    vertices, faces = geo_refine_1(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=expansion_weight, fixed_v=fixed_v, fixed_f=fixed_f,
                 distract_mask=distract_mask, distract_bbox=distract_bbox, thres=thres, no_decompose=no_decompose)
    vertices, faces = geo_refine_2(vertices, faces, fixed_v=fixed_v)
    return geo_refine_3(vertices, faces, rgb_ls, fixed_v=fixed_v, fixed_f=fixed_f, distract_mask=distract_mask)

def geo_refine_1(mesh_v, mesh_f, rgb_ls, normal_ls, expansion_weight=0.1, fixed_v=None, fixed_f=None,
                 distract_mask=None, distract_bbox=None, thres=3e-6, no_decompose=False):
    
    rm_normals = simple_remove(normal_ls)

    # transfer the alpha channel of rm_normals to img_list
    for idx, img in enumerate(rm_normals):
        rgb_ls[idx] = Image.fromarray(np.concatenate([np.array(rgb_ls[idx])[..., :3], np.array(img)[:, :, 3:4]], axis=-1))
    assert np.mean(np.array(rgb_ls[0])[..., 3]) < 250
    
    rgb_ls = erode_alpha(rgb_ls)

    stage1_lr = 0.08 if fixed_v is None else 0.01
    stage1_remesh_interval = 1 if fixed_v is None else 30

    if no_decompose:
        stage1_lr = 0.03
        stage1_remesh_interval = 30
    
    if fixed_v is not None:
        return mesh_v, mesh_f

    vertices, faces = reconstruct_stage1(rm_normals, steps=200, vertices=mesh_v, faces=mesh_f, fixed_v=fixed_v, fixed_f=fixed_f,
                                         lr=stage1_lr, remesh_interval=stage1_remesh_interval, start_edge_len=0.04,
                                         end_edge_len=0.010, gain=0.05, loss_expansion_weight=expansion_weight,
                                         distract_mask=distract_mask, distract_bbox=distract_bbox)

    vertices, faces = run_mesh_refine(vertices, faces, rm_normals, fixed_v=fixed_v, fixed_f=fixed_f, steps=100, start_edge_len=0.010, end_edge_len=0.001,
                                      decay=0.99, update_normal_interval=20, update_warmup=5, process_inputs=False, process_outputs=False, remesh_interval=1)
    return vertices, faces

def geo_refine_2(vertices, faces, fixed_v=None):
    meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=2, apply_sub_divide=False, sub_divide_threshold=0.25)
    simp_vertices, simp_faces = meshes.verts_packed(), meshes.faces_packed()
    vertices, faces = simp_vertices.detach().cpu().numpy(), simp_faces.detach().cpu().numpy()
    # vertices, faces = trimesh.remesh.subdivide(vertices, faces)
    return vertices, faces

def geo_refine_3(vertices_, faces_, rgb_ls, fixed_v=None, fixed_f=None, distract_mask=None):
    # vertices, faces, uvs = mesh_uv_wrap(vertices_, faces_)
    vmapping, indices, uvs = xatlas.parametrize(vertices_, faces_)
    vertices, faces = vertices_[vmapping], indices
    
    def subdivide(vertices, faces, uvs):
        vertices, faces = trimesh.remesh.subdivide(
            vertices=np.hstack((vertices, uvs.copy())),
            faces=faces
        )
        return vertices[:, :3], faces, vertices[:, 3:]

    if fixed_v is not None:
        dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(vertices, faces, uvs)
        dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs)
        # dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs)
        dense_vertices, dense_faces = trimesh.remesh.subdivide(vertices_, faces_)
        dense_vertices, dense_faces = trimesh.remesh.subdivide(dense_vertices, dense_faces)
        # dense_vertices, dense_faces = trimesh.remesh.subdivide(dense_vertices, dense_faces)
    else:
        dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(vertices, faces, uvs)
        dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs = subdivide(dense_atlas_vertices, dense_atlas_faces, dense_atlas_uvs)
        dense_vertices, dense_faces = trimesh.remesh.subdivide(vertices_, faces_)
        dense_vertices, dense_faces = trimesh.remesh.subdivide(dense_vertices, dense_faces)

    origin_len_v, origin_len_f = len(dense_vertices), len(dense_faces)

    # concatenate fixed_v and fixed_f
    if fixed_v is not None and fixed_f is not None:
        dense_vertices, dense_faces = np.concatenate([dense_vertices, fixed_v.detach().cpu().numpy()], axis=0), np.concatenate([dense_faces, fixed_f.detach().cpu().numpy() + len(dense_vertices)], axis=0)
    dense_vertices, dense_faces = torch.from_numpy(dense_vertices).cuda(), torch.from_numpy(dense_faces.astype('int32')).cuda()
    # reconstruct meshes
    meshes = Meshes(verts=[dense_vertices], faces=[dense_faces], textures=pytorch3d.renderer.mesh.textures.TexturesVertex([torch.zeros_like(dense_vertices).float()]))
    new_meshes = multiview_color_projection(meshes, rgb_ls, resolution=1024, device="cuda", complete_unseen=True, confidence_threshold=0.2, cameras_list = get_cameras_list([180, 225, 270, 0, 90, 135], "cuda", focal=1/1.2), weights=[2.0, 0.5, 0.0, 1.0, 0.0, 0.5] if distract_mask is None else [2.0, 0.0, 0.5, 1.0, 0.5, 0.0], distract_mask=distract_mask)
    
    if fixed_v is not None and fixed_f is not None:
        dense_vertices = dense_vertices[:origin_len_v]
        dense_faces = dense_faces[:origin_len_f]
        textures = new_meshes.textures.verts_features_packed()[:origin_len_v]
    else:
        textures = new_meshes.textures.verts_features_packed()

    # distances = torch.cdist(torch.tensor(dense_atlas_vertices).cuda(), torch.tensor(dense_vertices).cuda())
    # nearest_indices = torch.argmin(distances, dim=1)
    # atlas_textures = textures[nearest_indices]

    chunk_size = 500
    atlas_textures_chunks = []
    for i in range(0, len(dense_atlas_vertices), chunk_size):
        chunk = dense_atlas_vertices[i:i+chunk_size]
        distances = torch.cdist(torch.tensor(chunk).cuda(), torch.tensor(dense_vertices).cuda())
        nearest_indices = torch.argmin(distances, dim=1)
        atlas_textures_chunks.append(textures[nearest_indices])
    atlas_textures = torch.cat(atlas_textures_chunks, dim=0)

    dense_atlas_uvs = torch.tensor(dense_atlas_uvs, dtype=torch.float32).cuda()
    tex_img, mask = linear_grid_put_2d(1024, 1024, dense_atlas_uvs, atlas_textures)
    tex_img, mask = tex_img.cpu().numpy(), mask.cpu().numpy()
    tex_img = cv2.inpaint((tex_img * 255).astype(np.uint8), (mask*255).astype('uint8'), 3, cv2.INPAINT_NS)
    tex_img = Image.fromarray(np.transpose(tex_img,(1,0,2))[::-1])

    mesh = trimesh.Trimesh(vertices, faces, process=False)
    # material = trimesh.visual.texture.SimpleMaterial(image=tex_img, diffuse=(255, 255, 255))
    material = trimesh.visual.material.PBRMaterial(
        roughnessFactor=1.0,
        baseColorTexture=tex_img,
        baseColorFactor=np.array([255, 255, 255, 255], dtype=np.uint8)
    )
    texture_visuals = trimesh.visual.TextureVisuals(uv=uvs, image=tex_img, material=material)
    mesh.visual = texture_visuals

    return mesh, torch.tensor(vertices).cuda(), torch.tensor(faces.astype('int64')).cuda()