File size: 2,167 Bytes
ef198e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.

import torch
from . import Camera
import numpy as np


def projection(x=0.1, n=1.0, f=50.0, near_plane=None):
    if near_plane is None:
        near_plane = n
    return np.array(
        [[n / x, 0, 0, 0],
         [0, n / -x, 0, 0],
         [0, 0, -(f + near_plane) / (f - near_plane), -(2 * f * near_plane) / (f - near_plane)],
         [0, 0, -1, 0]]).astype(np.float32)


def ortho_projection(n=1.0, f=50.0):
    return np.array(
        [[1, 0, 0, 0],
         [0, -1, 0, 0],
         [0, 0, -2 / (f - n), -(f + n) / (f - n)],
         [0, 0, 0, 1]]).astype(np.float32)


class PerspectiveCamera(Camera):
    def __init__(self, fovy=49.0, device='cuda'):
        super(PerspectiveCamera, self).__init__()
        self.device = device
        focal = np.tan(fovy / 180.0 * np.pi * 0.5)
        self.proj_mtx = torch.from_numpy(projection(x=focal, f=1000.0, n=1.0, near_plane=0.1)).to(self.device).unsqueeze(dim=0)

    def project(self, points_bxnx4):
        out = torch.matmul(
            points_bxnx4,
            torch.transpose(self.proj_mtx, 1, 2))
        return out
    

class OrthogonalCamera(Camera):
    def __init__(self, device='cuda'):
        super(OrthogonalCamera, self).__init__()
        self.device = device
        self.proj_mtx = torch.from_numpy(ortho_projection(f=1000.0, n=0.1)).to(self.device).unsqueeze(dim=0)

    def project(self, points_bxnx4, ortho_scales_bx1):
        out = torch.matmul(
            points_bxnx4,
            torch.transpose(self.proj_mtx, 1, 2))
        # print(ortho_scales_bx1)
        out[:, :, 0] = out[:, :, 0] / ortho_scales_bx1[..., None] * 2.
        out[:, :, 1] = out[:, :, 1] / ortho_scales_bx1[..., None] * 2.
        return out