Spaces:
Running
on
L40S
Running
on
L40S
File size: 6,189 Bytes
ef198e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# ORIGINAL LICENSE
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# Modified by Jiale Xu
# The modifications are subject to the same license as the original.
#
# Modified by Yuze He
# The modifications are subject to the same license as the original.
import itertools
import torch
import torch.nn as nn
from .utils.renderer import generate_planes, project_onto_planes, sample_from_planes
class OSGDecoder(nn.Module):
"""
Triplane decoder that gives RGB and sigma values from sampled features.
Using ReLU here instead of Softplus in the original implementation.
Reference:
EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112
"""
def __init__(self, n_features: int,
hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU):
super().__init__()
self.net_sdf = nn.Sequential(
nn.Linear(3 * n_features, hidden_dim),
activation(),
*itertools.chain(*[[
nn.Linear(hidden_dim, hidden_dim),
activation(),
] for _ in range(num_layers - 2)]),
nn.Linear(hidden_dim, 1),
)
self.net_rgb = nn.Sequential(
nn.Linear(3 * n_features, hidden_dim),
activation(),
*itertools.chain(*[[
nn.Linear(hidden_dim, hidden_dim),
activation(),
] for _ in range(num_layers - 2)]),
nn.Linear(hidden_dim, 3),
)
self.net_deformation = nn.Sequential(
nn.Linear(3 * n_features, hidden_dim),
activation(),
*itertools.chain(*[[
nn.Linear(hidden_dim, hidden_dim),
activation(),
] for _ in range(num_layers - 2)]),
nn.Linear(hidden_dim, 3),
)
self.net_weight = nn.Sequential(
nn.Linear(8 * 3 * n_features, hidden_dim),
activation(),
*itertools.chain(*[[
nn.Linear(hidden_dim, hidden_dim),
activation(),
] for _ in range(num_layers - 2)]),
nn.Linear(hidden_dim, 21),
)
self.semantic_net = nn.Sequential(
nn.Linear(3 * n_features, hidden_dim),
activation(),
*itertools.chain(*[[
nn.Linear(hidden_dim, hidden_dim),
activation(),
] for _ in range(num_layers - 2)]),
nn.Linear(hidden_dim, 4),
)
# init all bias to zero
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.zeros_(m.bias)
def get_geometry_prediction(self, sampled_features, flexicubes_indices):
_N, n_planes, _M, _C = sampled_features.shape
sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)
sdf = self.net_sdf(sampled_features)
deformation = self.net_deformation(sampled_features)
grid_features = torch.index_select(input=sampled_features, index=flexicubes_indices.reshape(-1), dim=1)
grid_features = grid_features.reshape(
sampled_features.shape[0], flexicubes_indices.shape[0], flexicubes_indices.shape[1] * sampled_features.shape[-1])
weight = self.net_weight(grid_features) * 0.1
return sdf, deformation, weight
def get_texture_prediction(self, sampled_features):
_N, n_planes, _M, _C = sampled_features.shape
sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)
rgb = self.net_rgb(sampled_features)
rgb = torch.sigmoid(rgb)*(1 + 2*0.001) - 0.001 # Uses sigmoid clamping from MipNeRF
return rgb
def get_semantic_prediction(self, sampled_features):
_N, n_planes, _M, _C = sampled_features.shape
sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C)
semantic = self.semantic_net(sampled_features)
semantic = torch.softmax(semantic, dim=-1)
return semantic
class TriplaneSynthesizer(nn.Module):
"""
Synthesizer that renders a triplane volume with planes and a camera.
Reference:
EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L19
"""
DEFAULT_RENDERING_KWARGS = {
'ray_start': 'auto',
'ray_end': 'auto',
'box_warp': 2.,
'white_back': True,
'disparity_space_sampling': False,
'clamp_mode': 'softplus',
'sampler_bbox_min': -1.,
'sampler_bbox_max': 1.,
}
def __init__(self, triplane_dim: int, samples_per_ray: int):
super().__init__()
# attributes
self.triplane_dim = triplane_dim
self.rendering_kwargs = {
**self.DEFAULT_RENDERING_KWARGS,
'depth_resolution': samples_per_ray // 2,
'depth_resolution_importance': samples_per_ray // 2,
}
# modules
self.plane_axes = generate_planes()
self.decoder = OSGDecoder(n_features=triplane_dim)
def get_geometry_prediction(self, planes, sample_coordinates, flexicubes_indices):
plane_axes = self.plane_axes.to(planes.device)
sampled_features = sample_from_planes(
plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp'])
sdf, deformation, weight = self.decoder.get_geometry_prediction(sampled_features, flexicubes_indices)
semantic = self.decoder.get_semantic_prediction(sampled_features)
return sdf, deformation, weight, semantic
def get_texture_prediction(self, planes, sample_coordinates):
plane_axes = self.plane_axes.to(planes.device)
sampled_features = sample_from_planes(
plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=self.rendering_kwargs['box_warp'])
rgb = self.decoder.get_texture_prediction(sampled_features)
semantic = self.decoder.get_semantic_prediction(sampled_features)
return rgb, semantic
|