# Copyright (c) 2023, Zexin He # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch import torch.nn as nn import mcubes import nvdiffrast.torch as dr import loratorch as lora from einops import rearrange, repeat from .encoder.dino_wrapper import DinoWrapper from .decoder.transformer import TriplaneTransformer from .renderer.synthesizer import TriplaneSynthesizer from ..utils.mesh_util import xatlas_uvmap class NeRFSLRM(nn.Module): """ Full model of the large reconstruction model. """ def __init__( self, encoder_freeze: bool = False, encoder_model_name: str = 'facebook/dino-vitb16', encoder_feat_dim: int = 768, transformer_dim: int = 1024, transformer_layers: int = 16, transformer_heads: int = 16, triplane_low_res: int = 32, triplane_high_res: int = 64, triplane_dim: int = 80, rendering_samples_per_ray: int = 128, is_ortho: bool = False, lora_rank: int = 0, ): super().__init__() # modules self.encoder = DinoWrapper( model_name=encoder_model_name, freeze=encoder_freeze, ) self.transformer = TriplaneTransformer( inner_dim=transformer_dim, num_layers=transformer_layers, num_heads=transformer_heads, image_feat_dim=encoder_feat_dim, triplane_low_res=triplane_low_res, triplane_high_res=triplane_high_res, triplane_dim=triplane_dim, lora_rank=lora_rank, ) if lora_rank > 0: lora.mark_only_lora_as_trainable(self.transformer) self.transformer.pos_embed.requires_grad = True self.transformer.deconv.requires_grad = True self.synthesizer = TriplaneSynthesizer( triplane_dim=triplane_dim, samples_per_ray=rendering_samples_per_ray, is_ortho=is_ortho, ) if lora_rank > 0: self.freeze_modules(encoder=True, transformer=False, synthesizer=False) def freeze_modules(self, encoder=False, transformer=False, synthesizer=False): """ Freeze specified modules """ if encoder: for param in self.encoder.parameters(): param.requires_grad = False if transformer: for param in self.transformer.parameters(): param.requires_grad = False if synthesizer: for param in self.synthesizer.parameters(): param.requires_grad = False def forward_planes(self, images, cameras): # images: [B, V, C_img, H_img, W_img] # cameras: [B, V, 16] B = images.shape[0] # encode images image_feats = self.encoder(images, cameras) image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B) # transformer generating planes planes = self.transformer(image_feats) return planes def forward_synthesizer(self, planes, render_cameras, render_size: int): render_results = self.synthesizer( planes, render_cameras, render_size, ) return render_results def forward(self, images, cameras, render_cameras, render_size: int): # images: [B, V, C_img, H_img, W_img] # cameras: [B, V, 16] # render_cameras: [B, M, D_cam_render] # render_size: int B, M = render_cameras.shape[:2] planes = self.forward_planes(images, cameras) # render target views render_results = self.synthesizer(planes, render_cameras, render_size) return { 'planes': planes, **render_results, } def get_texture_prediction(self, planes, tex_pos, hard_mask=None): ''' Predict Texture given triplanes :param planes: the triplane feature map :param tex_pos: Position we want to query the texture field :param hard_mask: 2D silhoueete of the rendered image ''' tex_pos = torch.cat(tex_pos, dim=0) if not hard_mask is None: tex_pos = tex_pos * hard_mask.float() batch_size = tex_pos.shape[0] tex_pos = tex_pos.reshape(batch_size, -1, 3) ################### # We use mask to get the texture location (to save the memory) if hard_mask is not None: n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1) sample_tex_pose_list = [] max_point = n_point_list.max() expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5 for i in range(tex_pos.shape[0]): tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3) if tex_pos_one_shape.shape[1] < max_point: tex_pos_one_shape = torch.cat( [tex_pos_one_shape, torch.zeros( 1, max_point - tex_pos_one_shape.shape[1], 3, device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1) sample_tex_pose_list.append(tex_pos_one_shape) tex_pos = torch.cat(sample_tex_pose_list, dim=0) tex_feat = torch.utils.checkpoint.checkpoint( self.synthesizer.forward_points, planes, tex_pos, use_reentrant=False, )['rgb'] if hard_mask is not None: final_tex_feat = torch.zeros( planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device) expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5 for i in range(planes.shape[0]): final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1) tex_feat = final_tex_feat return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1]) def extract_mesh( self, planes: torch.Tensor, mesh_resolution: int = 256, mesh_threshold: int = 10.0, use_texture_map: bool = False, texture_resolution: int = 1024, **kwargs, ): ''' Extract a 3D mesh from triplane nerf. Only support batch_size 1. :param planes: triplane features :param mesh_resolution: marching cubes resolution :param mesh_threshold: iso-surface threshold :param use_texture_map: use texture map or vertex color :param texture_resolution: the resolution of texture map ''' assert planes.shape[0] == 1 device = planes.device grid_out = self.synthesizer.forward_grid( planes=planes, grid_size=mesh_resolution, ) vertices, faces = mcubes.marching_cubes( grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), mesh_threshold, ) vertices = vertices / (mesh_resolution - 1) * 2 - 1 if not use_texture_map: # query vertex colors vertices_tensor = torch.tensor(vertices, dtype=torch.float32, device=device).unsqueeze(0) vertices_colors = self.synthesizer.forward_points( planes, vertices_tensor)['rgb'].squeeze(0).cpu().numpy() vertices_colors = (vertices_colors * 255).astype(np.uint8) return vertices, faces, vertices_colors # use x-atlas to get uv mapping for the mesh vertices = torch.tensor(vertices, dtype=torch.float32, device=device) faces = torch.tensor(faces.astype(int), dtype=torch.long, device=device) ctx = dr.RasterizeCudaContext(device=device) uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap( ctx, vertices, faces, resolution=texture_resolution) tex_hard_mask = tex_hard_mask.float() # query the texture field to get the RGB color for texture map tex_feat = self.get_texture_prediction( planes, [gb_pos], tex_hard_mask) background_feature = torch.zeros_like(tex_feat) img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask) texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0) return vertices, faces, uvs, mesh_tex_idx, texture_map