Spaces:
Paused
Paused
model_name = "deepseek-coder-6.7b-instruct" | |
cmd_to_install = "ζͺη₯" # "`pip install -r request_llms/requirements_qwen.txt`" | |
import os | |
from toolbox import ProxyNetworkActivate | |
from toolbox import get_conf | |
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns | |
from threading import Thread | |
def download_huggingface_model(model_name, max_retry, local_dir): | |
from huggingface_hub import snapshot_download | |
for i in range(1, max_retry): | |
try: | |
snapshot_download(repo_id=model_name, local_dir=local_dir, resume_download=True) | |
break | |
except Exception as e: | |
print(f'\n\nδΈθ½½ε€±θ΄₯οΌιθ―第{i}欑δΈ...\n\n') | |
return local_dir | |
# ------------------------------------------------------------------------------------------------------------------------ | |
# ππ» Local Model | |
# ------------------------------------------------------------------------------------------------------------------------ | |
class GetCoderLMHandle(LocalLLMHandle): | |
def load_model_info(self): | |
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
self.model_name = model_name | |
self.cmd_to_install = cmd_to_install | |
def load_model_and_tokenizer(self): | |
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
with ProxyNetworkActivate('Download_LLM'): | |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
model_name = "deepseek-ai/deepseek-coder-6.7b-instruct" | |
# local_dir = f"~/.cache/{model_name}" | |
# if not os.path.exists(local_dir): | |
# tokenizer = download_huggingface_model(model_name, max_retry=128, local_dir=local_dir) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
self._streamer = TextIteratorStreamer(tokenizer) | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) | |
if get_conf('LOCAL_MODEL_DEVICE') != 'cpu': | |
model = model.cuda() | |
return model, tokenizer | |
def llm_stream_generator(self, **kwargs): | |
# πββοΈπββοΈπββοΈ εθΏη¨ζ§θ‘ | |
def adaptor(kwargs): | |
query = kwargs['query'] | |
max_length = kwargs['max_length'] | |
top_p = kwargs['top_p'] | |
temperature = kwargs['temperature'] | |
history = kwargs['history'] | |
return query, max_length, top_p, temperature, history | |
query, max_length, top_p, temperature, history = adaptor(kwargs) | |
history.append({ 'role': 'user', 'content': query}) | |
messages = history | |
inputs = self._tokenizer.apply_chat_template(messages, return_tensors="pt").to(self._model.device) | |
generation_kwargs = dict( | |
inputs=inputs, | |
max_new_tokens=max_length, | |
do_sample=False, | |
top_p=top_p, | |
streamer = self._streamer, | |
top_k=50, | |
temperature=temperature, | |
num_return_sequences=1, | |
eos_token_id=32021, | |
) | |
thread = Thread(target=self._model.generate, kwargs=generation_kwargs, daemon=True) | |
thread.start() | |
generated_text = "" | |
for new_text in self._streamer: | |
generated_text += new_text | |
# print(generated_text) | |
yield generated_text | |
def try_to_import_special_deps(self, **kwargs): pass | |
# import something that will raise error if the user does not install requirement_*.txt | |
# πββοΈπββοΈπββοΈ δΈ»θΏη¨ζ§θ‘ | |
# import importlib | |
# importlib.import_module('modelscope') | |
# ------------------------------------------------------------------------------------------------------------------------ | |
# ππ» GPT-Academic Interface | |
# ------------------------------------------------------------------------------------------------------------------------ | |
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetCoderLMHandle, model_name, history_format='chatglm3') |