Spaces:
Paused
Paused
update
Browse files- crazy_functions/crazy_utils.py +9 -2
- crazy_functions/批量翻译PDF文档_多线程.py +111 -84
- crazy_functions/高级功能函数模板.py +1 -1
crazy_functions/crazy_utils.py
CHANGED
@@ -37,6 +37,7 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
|
37 |
lines = txt_tocut.split('\n')
|
38 |
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
39 |
estimated_line_cut = int(estimated_line_cut)
|
|
|
40 |
for cnt in reversed(range(estimated_line_cut)):
|
41 |
if must_break_at_empty_line:
|
42 |
if lines[cnt] != "": continue
|
@@ -45,7 +46,7 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
|
45 |
post = "\n".join(lines[cnt:])
|
46 |
if get_token_fn(prev) < limit: break
|
47 |
if cnt == 0:
|
48 |
-
print('what the fuck ?')
|
49 |
raise RuntimeError("存在一行极长的文本!")
|
50 |
# print(len(post))
|
51 |
# 列表递归接龙
|
@@ -55,4 +56,10 @@ def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
|
55 |
try:
|
56 |
return cut(txt, must_break_at_empty_line=True)
|
57 |
except RuntimeError:
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
lines = txt_tocut.split('\n')
|
38 |
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
39 |
estimated_line_cut = int(estimated_line_cut)
|
40 |
+
cnt = 0
|
41 |
for cnt in reversed(range(estimated_line_cut)):
|
42 |
if must_break_at_empty_line:
|
43 |
if lines[cnt] != "": continue
|
|
|
46 |
post = "\n".join(lines[cnt:])
|
47 |
if get_token_fn(prev) < limit: break
|
48 |
if cnt == 0:
|
49 |
+
# print('what the fuck ? 存在一行极长的文本!')
|
50 |
raise RuntimeError("存在一行极长的文本!")
|
51 |
# print(len(post))
|
52 |
# 列表递归接龙
|
|
|
56 |
try:
|
57 |
return cut(txt, must_break_at_empty_line=True)
|
58 |
except RuntimeError:
|
59 |
+
try:
|
60 |
+
return cut(txt, must_break_at_empty_line=False)
|
61 |
+
except RuntimeError:
|
62 |
+
# 这个中文的句号是故意的,作为一个标识而存在
|
63 |
+
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False)
|
64 |
+
return [r.replace('。\n', '.') for r in res]
|
65 |
+
|
crazy_functions/批量翻译PDF文档_多线程.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
2 |
import re
|
3 |
import unicodedata
|
4 |
-
fast_debug = False
|
5 |
|
6 |
|
7 |
def is_paragraph_break(match):
|
@@ -61,7 +60,6 @@ def clean_text(raw_text):
|
|
61 |
|
62 |
return final_text.strip()
|
63 |
|
64 |
-
|
65 |
def read_and_clean_pdf_text(fp):
|
66 |
import fitz, re
|
67 |
import numpy as np
|
@@ -69,19 +67,16 @@ def read_and_clean_pdf_text(fp):
|
|
69 |
with fitz.open(fp) as doc:
|
70 |
meta_txt = []
|
71 |
meta_font = []
|
72 |
-
for page in doc:
|
73 |
# file_content += page.get_text()
|
74 |
text_areas = page.get_text("dict") # 获取页面上的文本信息
|
75 |
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
# # 行元提取 for each word segment with in line for each line for each block
|
78 |
-
# meta_txt.extend( [ ["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ] for t in text_areas['blocks'] if 'lines' in t])
|
79 |
-
# meta_font.extend([ [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ] for t in text_areas['blocks'] if 'lines' in t])
|
80 |
-
|
81 |
-
# 块元提取 for each word segment with in line for each line for each block
|
82 |
-
meta_txt.extend( [ " ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t])
|
83 |
-
meta_font.extend([ np.mean( [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t])
|
84 |
-
|
85 |
def 把字符太少的块清除为回车(meta_txt):
|
86 |
for index, block_txt in enumerate(meta_txt):
|
87 |
if len(block_txt) < 100:
|
@@ -123,19 +118,17 @@ def read_and_clean_pdf_text(fp):
|
|
123 |
# 换行 -> 双换行
|
124 |
meta_txt = meta_txt.replace('\n', '\n\n')
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
return meta_txt
|
129 |
|
130 |
@CatchException
|
131 |
-
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history,
|
132 |
import glob
|
133 |
import os
|
134 |
|
135 |
# 基本信息:功能、贡献者
|
136 |
chatbot.append([
|
137 |
"函数插件功能?",
|
138 |
-
"批量总结PDF文档。函数插件贡献者: Binary-Husky
|
139 |
yield chatbot, history, '正常'
|
140 |
|
141 |
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
@@ -174,82 +167,116 @@ def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, systemPromp
|
|
174 |
return
|
175 |
|
176 |
# 开始正式执行任务
|
177 |
-
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history,
|
178 |
|
179 |
|
180 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
import time
|
182 |
import glob
|
183 |
import os
|
184 |
import fitz
|
185 |
import tiktoken
|
186 |
-
|
187 |
-
|
188 |
for index, fp in enumerate(file_manifest):
|
189 |
-
|
190 |
-
file_content = read_and_clean_pdf_text(fp)
|
191 |
-
|
192 |
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
193 |
enc = tiktoken.get_encoding("gpt2")
|
194 |
-
TOKEN_LIMIT_PER_FRAGMENT = 2048
|
195 |
get_token_num = lambda txt: len(enc.encode(txt))
|
196 |
-
#
|
197 |
-
paper_fragments
|
198 |
-
txt=file_content,
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
executor.shutdown(); break
|
228 |
-
# 更好的UI视觉效果
|
229 |
-
observe_win = []
|
230 |
-
# 每个线程都要喂狗(看门狗)
|
231 |
-
for thread_index, _ in enumerate(worker_done):
|
232 |
-
mutable[thread_index][1] = time.time()
|
233 |
-
# 在前端打印些好玩的东西
|
234 |
-
for thread_index, _ in enumerate(worker_done):
|
235 |
-
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-30:].replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"`... ]"
|
236 |
-
observe_win.append(print_something_really_funny)
|
237 |
-
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
|
238 |
-
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
|
239 |
-
yield chatbot, history, msg
|
240 |
-
|
241 |
-
# Wait for tasks to complete
|
242 |
-
results = [future.result() for future in futures]
|
243 |
-
|
244 |
-
print(results)
|
245 |
-
# full_result += gpt_say
|
246 |
-
|
247 |
-
# history.extend([fp, full_result])
|
248 |
-
|
249 |
-
res = write_results_to_file(history)
|
250 |
-
chatbot.append(("完成了吗?", res)); msg = "完成"
|
251 |
-
yield chatbot, history, msg
|
252 |
-
|
253 |
-
|
254 |
-
# if __name__ == '__main__':
|
255 |
-
# pro()
|
|
|
1 |
from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down
|
2 |
import re
|
3 |
import unicodedata
|
|
|
4 |
|
5 |
|
6 |
def is_paragraph_break(match):
|
|
|
60 |
|
61 |
return final_text.strip()
|
62 |
|
|
|
63 |
def read_and_clean_pdf_text(fp):
|
64 |
import fitz, re
|
65 |
import numpy as np
|
|
|
67 |
with fitz.open(fp) as doc:
|
68 |
meta_txt = []
|
69 |
meta_font = []
|
70 |
+
for index, page in enumerate(doc):
|
71 |
# file_content += page.get_text()
|
72 |
text_areas = page.get_text("dict") # 获取页面上的文本信息
|
73 |
|
74 |
+
# 块元提取 for each word segment with in line for each line cross-line words for each block
|
75 |
+
meta_txt.extend( [ " ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t])
|
76 |
+
meta_font.extend([ np.mean( [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t])
|
77 |
+
if index==0:
|
78 |
+
page_one_meta = [" ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]).replace('- ','') for t in text_areas['blocks'] if 'lines' in t]
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
def 把字符太少的块清除为回车(meta_txt):
|
81 |
for index, block_txt in enumerate(meta_txt):
|
82 |
if len(block_txt) < 100:
|
|
|
118 |
# 换行 -> 双换行
|
119 |
meta_txt = meta_txt.replace('\n', '\n\n')
|
120 |
|
121 |
+
return meta_txt, page_one_meta
|
|
|
|
|
122 |
|
123 |
@CatchException
|
124 |
+
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
|
125 |
import glob
|
126 |
import os
|
127 |
|
128 |
# 基本信息:功能、贡献者
|
129 |
chatbot.append([
|
130 |
"函数插件功能?",
|
131 |
+
"批量总结PDF文档。函数插件贡献者: Binary-Husky(二进制哈士奇)"])
|
132 |
yield chatbot, history, '正常'
|
133 |
|
134 |
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
|
|
167 |
return
|
168 |
|
169 |
# 开始正式执行任务
|
170 |
+
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
|
171 |
|
172 |
|
173 |
+
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
|
174 |
+
import time
|
175 |
+
from concurrent.futures import ThreadPoolExecutor
|
176 |
+
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
|
177 |
+
# 用户反馈
|
178 |
+
chatbot.append([inputs_show_user, ""]); msg = '正常'
|
179 |
+
yield chatbot, [], msg
|
180 |
+
executor = ThreadPoolExecutor(max_workers=16)
|
181 |
+
mutable = ["", time.time()]
|
182 |
+
future = executor.submit(lambda:
|
183 |
+
predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
|
184 |
+
)
|
185 |
+
while True:
|
186 |
+
# yield一次以刷新前端页面
|
187 |
+
time.sleep(refresh_interval)
|
188 |
+
# “喂狗”(看门狗)
|
189 |
+
mutable[1] = time.time()
|
190 |
+
if future.done(): break
|
191 |
+
chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常"
|
192 |
+
yield chatbot, [], msg
|
193 |
+
return future.result()
|
194 |
+
|
195 |
+
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval, max_workers=10, scroller_max_len=30):
|
196 |
+
import time
|
197 |
+
from concurrent.futures import ThreadPoolExecutor
|
198 |
+
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
|
199 |
+
assert len(inputs_array) == len(history_array)
|
200 |
+
assert len(inputs_array) == len(sys_prompt_array)
|
201 |
+
executor = ThreadPoolExecutor(max_workers=max_workers)
|
202 |
+
n_frag = len(inputs_array)
|
203 |
+
# 异步原子
|
204 |
+
mutable = [["", time.time()] for _ in range(n_frag)]
|
205 |
+
def _req_gpt(index, inputs, history, sys_prompt):
|
206 |
+
gpt_say = predict_no_ui_long_connection(
|
207 |
+
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
|
208 |
+
)
|
209 |
+
return gpt_say
|
210 |
+
# 异步任务开始
|
211 |
+
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
212 |
+
cnt = 0
|
213 |
+
while True:
|
214 |
+
# yield一次以刷新前端页面
|
215 |
+
time.sleep(refresh_interval); cnt += 1
|
216 |
+
worker_done = [h.done() for h in futures]
|
217 |
+
if all(worker_done): executor.shutdown(); break
|
218 |
+
# 更好的UI视觉效果
|
219 |
+
observe_win = []
|
220 |
+
# 每个线程都要“喂狗”(看门狗)
|
221 |
+
for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time()
|
222 |
+
# 在前端打印些好玩的东西
|
223 |
+
for thread_index, _ in enumerate(worker_done):
|
224 |
+
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
|
225 |
+
replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"`... ]"
|
226 |
+
observe_win.append(print_something_really_funny)
|
227 |
+
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
|
228 |
+
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
|
229 |
+
yield chatbot, [], msg
|
230 |
+
# 异步任务结束
|
231 |
+
gpt_response_collection = []
|
232 |
+
for inputs_show_user, f in zip(inputs_show_user_array, futures):
|
233 |
+
gpt_res = f.result()
|
234 |
+
gpt_response_collection.extend([inputs_show_user, gpt_res])
|
235 |
+
return gpt_response_collection
|
236 |
+
|
237 |
+
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
|
238 |
import time
|
239 |
import glob
|
240 |
import os
|
241 |
import fitz
|
242 |
import tiktoken
|
243 |
+
TOKEN_LIMIT_PER_FRAGMENT = 1600
|
244 |
+
|
245 |
for index, fp in enumerate(file_manifest):
|
246 |
+
# 读取PDF文件
|
247 |
+
file_content, page_one = read_and_clean_pdf_text(fp)
|
248 |
+
# 递归地切割PDF文件
|
249 |
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
250 |
enc = tiktoken.get_encoding("gpt2")
|
|
|
251 |
get_token_num = lambda txt: len(enc.encode(txt))
|
252 |
+
# 分解文本
|
253 |
+
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
254 |
+
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
255 |
+
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
256 |
+
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
257 |
+
# 为了更好的效果,我们剥离Introduction之后的部分
|
258 |
+
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
259 |
+
# 单线,获取文章meta信息
|
260 |
+
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
261 |
+
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
262 |
+
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
|
263 |
+
top_p=top_p, temperature=temperature,
|
264 |
+
chatbot=chatbot, history=[],
|
265 |
+
sys_prompt="Your job is to collect information from materials。",
|
266 |
+
)
|
267 |
+
# 多线,翻译
|
268 |
+
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
269 |
+
inputs_array = [f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
|
270 |
+
inputs_show_user_array = [f"" for _ in paper_fragments],
|
271 |
+
top_p=top_p, temperature=temperature,
|
272 |
+
chatbot=chatbot,
|
273 |
+
history_array=[[paper_meta] for _ in paper_fragments],
|
274 |
+
sys_prompt_array=["请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
|
275 |
+
max_workers=16 # OpenAI所允许的最大并行过载
|
276 |
+
)
|
277 |
+
|
278 |
+
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n'].extend(gpt_response_collection)
|
279 |
+
res = write_results_to_file(final)
|
280 |
+
chatbot.append((f"{fp}完成了吗?", res)); msg = "完成"
|
281 |
+
yield chatbot, history, msg
|
282 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
crazy_functions/高级功能函数模板.py
CHANGED
@@ -5,7 +5,7 @@ import datetime
|
|
5 |
@CatchException
|
6 |
def 高阶功能模板函数(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
|
7 |
history = [] # 清空历史,以免输入溢出
|
8 |
-
chatbot.append(("这是什么功能?", "[Local Message] 请注意,您正在调用一个[函数插件]
|
9 |
yield chatbot, history, '正常' # 由于请求gpt需要一段时间,我们先及时地做一次状态显示
|
10 |
|
11 |
for i in range(5):
|
|
|
5 |
@CatchException
|
6 |
def 高阶功能模板函数(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT):
|
7 |
history = [] # 清空历史,以免输入溢出
|
8 |
+
chatbot.append(("这是什么功能?", "[Local Message] 请注意,您正在调用一个[函数插件]的模板,该函数面向希望实现更多有趣功能的开发者,它可以作为创建新功能函数的模板(该函数只有25行代码)。此外我们也提供可同步处理大量文件的多线程Demo供您参考。您若希望分享新的功能模组,请不吝PR!"))
|
9 |
yield chatbot, history, '正常' # 由于请求gpt需要一段时间,我们先及时地做一次状态显示
|
10 |
|
11 |
for i in range(5):
|