""" 该文件中主要包含2个函数,是所有LLM的通用接口,它们会继续向下调用更底层的LLM模型,处理多模型并行等细节 不具备多线程能力的函数:正常对话时使用,具备完备的交互功能,不可多线程 1. predict(...) 具备多线程调用能力的函数:在函数插件中被调用,灵活而简洁 2. predict_no_ui_long_connection(...) """ import tiktoken from functools import lru_cache from concurrent.futures import ThreadPoolExecutor from toolbox import get_conf, trimmed_format_exc from .bridge_chatgpt import predict_no_ui_long_connection as chatgpt_noui from .bridge_chatgpt import predict as chatgpt_ui from .bridge_chatglm import predict_no_ui_long_connection as chatglm_noui from .bridge_chatglm import predict as chatglm_ui from .bridge_newbing import predict_no_ui_long_connection as newbing_noui from .bridge_newbing import predict as newbing_ui # from .bridge_tgui import predict_no_ui_long_connection as tgui_noui # from .bridge_tgui import predict as tgui_ui colors = ['#FF00FF', '#00FFFF', '#FF0000', '#990099', '#009999', '#990044'] class LazyloadTiktoken(object): def __init__(self, model): self.model = model @staticmethod @lru_cache(maxsize=128) def get_encoder(model): print('正在加载tokenizer,如果是第一次运行,可能需要一点时间下载参数') tmp = tiktoken.encoding_for_model(model) print('加载tokenizer完毕') return tmp def encode(self, *args, **kwargs): encoder = self.get_encoder(self.model) return encoder.encode(*args, **kwargs) def decode(self, *args, **kwargs): encoder = self.get_encoder(self.model) return encoder.decode(*args, **kwargs) # Endpoint 重定向 API_URL_REDIRECT, = get_conf("API_URL_REDIRECT") openai_endpoint = "https://api.openai.com/v1/chat/completions" api2d_endpoint = "https://openai.api2d.net/v1/chat/completions" newbing_endpoint = "wss://sydney.bing.com/sydney/ChatHub" # 兼容旧版的配置 try: API_URL, = get_conf("API_URL") if API_URL != "https://api.openai.com/v1/chat/completions": openai_endpoint = API_URL print("警告!API_URL配置选项将被弃用,请更换为API_URL_REDIRECT配置") except: pass # 新版配置 if openai_endpoint in API_URL_REDIRECT: openai_endpoint = API_URL_REDIRECT[openai_endpoint] if api2d_endpoint in API_URL_REDIRECT: api2d_endpoint = API_URL_REDIRECT[api2d_endpoint] if newbing_endpoint in API_URL_REDIRECT: newbing_endpoint = API_URL_REDIRECT[newbing_endpoint] # 获取tokenizer tokenizer_gpt35 = LazyloadTiktoken("gpt-3.5-turbo") tokenizer_gpt4 = LazyloadTiktoken("gpt-4") get_token_num_gpt35 = lambda txt: len(tokenizer_gpt35.encode(txt, disallowed_special=())) get_token_num_gpt4 = lambda txt: len(tokenizer_gpt4.encode(txt, disallowed_special=())) model_info = { # openai "gpt-3.5-turbo": { "fn_with_ui": chatgpt_ui, "fn_without_ui": chatgpt_noui, "endpoint": openai_endpoint, "max_token": 4096, "tokenizer": tokenizer_gpt35, "token_cnt": get_token_num_gpt35, }, "gpt-4": { "fn_with_ui": chatgpt_ui, "fn_without_ui": chatgpt_noui, "endpoint": openai_endpoint, "max_token": 8192, "tokenizer": tokenizer_gpt4, "token_cnt": get_token_num_gpt4, }, # api_2d "api2d-gpt-3.5-turbo": { "fn_with_ui": chatgpt_ui, "fn_without_ui": chatgpt_noui, "endpoint": api2d_endpoint, "max_token": 4096, "tokenizer": tokenizer_gpt35, "token_cnt": get_token_num_gpt35, }, "api2d-gpt-4": { "fn_with_ui": chatgpt_ui, "fn_without_ui": chatgpt_noui, "endpoint": api2d_endpoint, "max_token": 8192, "tokenizer": tokenizer_gpt4, "token_cnt": get_token_num_gpt4, }, # chatglm "chatglm": { "fn_with_ui": chatglm_ui, "fn_without_ui": chatglm_noui, "endpoint": None, "max_token": 1024, "tokenizer": tokenizer_gpt35, "token_cnt": get_token_num_gpt35, }, # newbing "newbing": { "fn_with_ui": newbing_ui, "fn_without_ui": newbing_noui, "endpoint": newbing_endpoint, "max_token": 4096, "tokenizer": tokenizer_gpt35, "token_cnt": get_token_num_gpt35, }, } AVAIL_LLM_MODELS, = get_conf("AVAIL_LLM_MODELS") if "jittorllms_rwkv" in AVAIL_LLM_MODELS: from .bridge_jittorllms_rwkv import predict_no_ui_long_connection as rwkv_noui from .bridge_jittorllms_rwkv import predict as rwkv_ui model_info.update({ "jittorllms_rwkv": { "fn_with_ui": rwkv_ui, "fn_without_ui": rwkv_noui, "endpoint": None, "max_token": 1024, "tokenizer": tokenizer_gpt35, "token_cnt": get_token_num_gpt35, }, }) if "jittorllms_llama" in AVAIL_LLM_MODELS: from .bridge_jittorllms_llama import predict_no_ui_long_connection as llama_noui from .bridge_jittorllms_llama import predict as llama_ui model_info.update({ "jittorllms_llama": { "fn_with_ui": llama_ui, "fn_without_ui": llama_noui, "endpoint": None, "max_token": 1024, "tokenizer": tokenizer_gpt35, "token_cnt": get_token_num_gpt35, }, }) if "jittorllms_pangualpha" in AVAIL_LLM_MODELS: from .bridge_jittorllms_pangualpha import predict_no_ui_long_connection as pangualpha_noui from .bridge_jittorllms_pangualpha import predict as pangualpha_ui model_info.update({ "jittorllms_pangualpha": { "fn_with_ui": pangualpha_ui, "fn_without_ui": pangualpha_noui, "endpoint": None, "max_token": 1024, "tokenizer": tokenizer_gpt35, "token_cnt": get_token_num_gpt35, }, }) if "moss" in AVAIL_LLM_MODELS: from .bridge_moss import predict_no_ui_long_connection as moss_noui from .bridge_moss import predict as moss_ui model_info.update({ "moss": { "fn_with_ui": moss_ui, "fn_without_ui": moss_noui, "endpoint": None, "max_token": 1024, "tokenizer": tokenizer_gpt35, "token_cnt": get_token_num_gpt35, }, }) def LLM_CATCH_EXCEPTION(f): """ 装饰器函数,将错误显示出来 """ def decorated(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience): try: return f(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience) except Exception as e: tb_str = '\n```\n' + trimmed_format_exc() + '\n```\n' observe_window[0] = tb_str return tb_str return decorated def predict_no_ui_long_connection(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience=False): """ 发送至LLM,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。 inputs: 是本次问询的输入 sys_prompt: 系统静默prompt llm_kwargs: LLM的内部调优参数 history: 是之前的对话列表 observe_window = None: 用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗 """ import threading, time, copy model = llm_kwargs['llm_model'] n_model = 1 if '&' not in model: assert not model.startswith("tgui"), "TGUI不支持函数插件的实现" # 如果只询问1个大语言模型: method = model_info[model]["fn_without_ui"] return method(inputs, llm_kwargs, history, sys_prompt, observe_window, console_slience) else: # 如果同时询问多个大语言模型: executor = ThreadPoolExecutor(max_workers=4) models = model.split('&') n_model = len(models) window_len = len(observe_window) assert window_len==3 window_mutex = [["", time.time(), ""] for _ in range(n_model)] + [True] futures = [] for i in range(n_model): model = models[i] method = model_info[model]["fn_without_ui"] llm_kwargs_feedin = copy.deepcopy(llm_kwargs) llm_kwargs_feedin['llm_model'] = model future = executor.submit(LLM_CATCH_EXCEPTION(method), inputs, llm_kwargs_feedin, history, sys_prompt, window_mutex[i], console_slience) futures.append(future) def mutex_manager(window_mutex, observe_window): while True: time.sleep(0.25) if not window_mutex[-1]: break # 看门狗(watchdog) for i in range(n_model): window_mutex[i][1] = observe_window[1] # 观察窗(window) chat_string = [] for i in range(n_model): chat_string.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {window_mutex[i][0]} </font>" ) res = '<br/><br/>\n\n---\n\n'.join(chat_string) # # # # # # # # # # # observe_window[0] = res t_model = threading.Thread(target=mutex_manager, args=(window_mutex, observe_window), daemon=True) t_model.start() return_string_collect = [] while True: worker_done = [h.done() for h in futures] if all(worker_done): executor.shutdown() break time.sleep(1) for i, future in enumerate(futures): # wait and get return_string_collect.append( f"【{str(models[i])} 说】: <font color=\"{colors[i]}\"> {future.result()} </font>" ) window_mutex[-1] = False # stop mutex thread res = '<br/><br/>\n\n---\n\n'.join(return_string_collect) return res def predict(inputs, llm_kwargs, *args, **kwargs): """ 发送至LLM,流式获取输出。 用于基础的对话功能。 inputs 是本次问询的输入 top_p, temperature是LLM的内部调优参数 history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误) chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容 additional_fn代表点击的哪个按钮,按钮见functional.py """ method = model_info[llm_kwargs['llm_model']]["fn_with_ui"] yield from method(inputs, llm_kwargs, *args, **kwargs)