File size: 10,299 Bytes
dfbd440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# app.py — ZeroGPU対応版
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import os
import subprocess
import traceback
import base64
import io
from pathlib import Path

# FastAPI関連(ハイブリッド構成のため維持)
from fastapi import FastAPI, UploadFile, File, Form, HTTPException

# グローバル変数としてパイプラインを定義(初期値はNone)
pipe = None
face_app = None
upsampler = None
UPSCALE_OK = False

# 0. Cache dir & helpers (起動時に実行)
PERSIST_BASE = Path("/data")
CACHE_ROOT = (PERSIST_BASE / "instantid_cache" if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK)
              else Path.home() / ".cache" / "instantid_cache")
MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR = CACHE_ROOT/"models", CACHE_ROOT/"models"/"Lora", CACHE_ROOT/"embeddings", CACHE_ROOT/"realesrgan"

for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR):
    p.mkdir(parents=True, exist_ok=True)

def dl(url: str, dst: Path, attempts: int = 2):
    if dst.exists(): return
    for i in range(1, attempts + 1):
        print(f"⬇ Downloading {dst.name} (try {i}/{attempts})")
        if subprocess.call(["wget", "-q", "-O", str(dst), url]) == 0: return
    raise RuntimeError(f"download failed → {url}")

# 1. Asset download (起動時に実行)
print("— Starting asset download check —")
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
dl("https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16", BASE_CKPT)
IP_BIN_FILE = LORA_DIR / "ip-adapter-plus-face_sd15.bin"
dl("https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter-plus-face_sd15.bin", IP_BIN_FILE)
LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
dl("https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors", LORA_FILE)
print("— Asset download check finished —")


# 2. パイプライン初期化関数 (GPU確保後に呼び出される)
def initialize_pipelines():
    global pipe, face_app, upsampler, UPSCALE_OK
    
    # torch/diffusers/onnxruntimeなどのインポートを関数内に移動
    from diffusers import StableDiffusionPipeline, ControlNetModel, DPMSolverMultistepScheduler, AutoencoderKL
    from insightface.app import FaceAnalysis

    print("--- Initializing Pipelines (GPU is now available) ---")
    
    device = torch.device("cuda") # ZeroGPUではGPUが保証されている
    dtype = torch.float16

    # FaceAnalysis
    if face_app is None:
        print("Initializing FaceAnalysis...")
        providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
        face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers)
        face_app.prepare(ctx_id=0, det_size=(640, 640))
        print("FaceAnalysis initialized.")

    # Main Pipeline
    if pipe is None:
        print("Loading ControlNet...")
        controlnet = ControlNetModel.from_pretrained("InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype)
        
        print("Loading StableDiffusionPipeline...")
        pipe = StableDiffusionPipeline.from_single_file(BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2)
        
        print("Moving pipeline to GPU...")
        pipe.to(device) # .to(device)をここで呼ぶ

        print("Loading VAE...")
        pipe.vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype).to(device)
        pipe.controlnet = controlnet
        
        print("Configuring Scheduler...")
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
        
        print("Loading IP-Adapter and LoRA...")
        pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=IP_BIN_FILE.name)
        pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name)
        
        pipe.set_ip_adapter_scale(0.65)
        print("Main pipeline initialized.")

    # Upscaler
    if upsampler is None and not UPSCALE_OK: # 一度失敗したら再試行しない
        print("Checking for Upscaler...")
        try:
            from basicsr.archs.rrdb_arch import RRDBNet
            from realesrgan import RealESRGAN
            rrdb = RRDBNet(3, 3, 64, 23, 32, scale=8)
            upsampler = RealESRGAN(device, rrdb, scale=8)
            upsampler.load_weights(str(UPSCALE_DIR / "RealESRGAN_x8plus.pth"))
            UPSCALE_OK = True
            print("Upscaler initialized successfully.")
        except Exception as e:
            UPSCALE_OK = False # 失敗を記録
            print(f"Real-ESRGAN disabled → {e}")
    
    print("--- All pipelines ready ---")


# 4. Core generation logic
BASE_PROMPT = ("(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k,\n""photo of {subject},\n""cinematic lighting, golden hour, rim light, shallow depth of field,\n""textured skin, high detail, shot on Canon EOS R5, 85 mm f/1.4, ISO 200,\n""<lora:ip-adapter-faceid-plusv2_sd15_lora:0.65>, (face),\n""(aesthetic:1.1), (cinematic:0.8)")
NEG_PROMPT = ("ng_deepnegative_v1_75t, CyberRealistic_Negative-neg, UnrealisticDream, ""(worst quality:2), (low quality:1.8), lowres, (jpeg artifacts:1.2), ""painting, sketch, illustration, drawing, cartoon, anime, cgi, render, 3d, ""monochrome, grayscale, text, logo, watermark, signature, username, ""(MajicNegative_V2:0.8), bad hands, extra digits, fused fingers, malformed limbs, ""missing arms, missing legs, (badhandv4:0.7), BadNegAnatomyV1-neg, skin blemishes, acnes, age spot, glans")


# ZeroGPUで実行される本体。durationを60秒に設定。
@spaces.GPU(duration=60)
def _generate_core(face_img, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress=gr.Progress(track_tqdm=True)):
    # 初回呼び出し時にパイプラインを初期化
    initialize_pipelines()

    progress(0, desc="Generating image...")
    prompt = BASE_PROMPT.format(subject=(subject.strip() or "a beautiful 20yo woman"))
    if add_prompt: prompt += ", " + add_prompt
    neg = NEG_PROMPT + (", " + add_neg if add_neg else "")
    pipe.set_ip_adapter_scale(ip_scale)

    result = pipe(prompt=prompt, negative_prompt=neg, ip_adapter_image=face_img, image=face_img, controlnet_conditioning_scale=0.9, num_inference_steps=int(steps) + 5, guidance_scale=cfg, width=int(w), height=int(h)).images[0]
    
    if upscale and UPSCALE_OK:
        progress(0.8, desc="Upscaling...")
        up, _ = upsampler.enhance(cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR), outscale=up_factor)
        result = Image.fromarray(cv2.cvtColor(up, cv2.COLOR_BGR2RGB))
    
    return result

# GradioのUIから呼び出されるラッパー関数
def generate_ui(face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress=gr.Progress(track_tqdm=True)):
    if face_np is None: raise gr.Error("顔画像をアップロードしてください。")
    # NumPy配列をPillow画像に変換
    face_img = Image.fromarray(face_np)
    return _generate_core(face_img, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress)


# 5. Gradio UI Definition
with gr.Blocks() as demo:
    gr.Markdown("# InstantID – Beautiful Realistic Asians v7 (ZeroGPU)")
    with gr.Row():
        with gr.Column():
            face_in = gr.Image(label="顔写真",type="numpy")
            subj_in = gr.Textbox(label="被写体説明",placeholder="e.g. woman in black suit, smiling")
            add_in = gr.Textbox(label="追加プロンプト")
            addneg_in = gr.Textbox(label="追加ネガティブ")
            with gr.Accordion("詳細設定", open=False):
                ip_sld = gr.Slider(0,1.5,0.65,step=0.05,label="IP‑Adapter scale")
                cfg_sld = gr.Slider(1,15,6,step=0.5,label="CFG")
                step_sld = gr.Slider(10,50,20,step=1,label="Steps")
                w_sld = gr.Slider(512,1024,512,step=64,label="幅")
                h_sld = gr.Slider(512,1024,768,step=64,label="高さ")
                up_ck = gr.Checkbox(label="アップスケール",value=True)
                up_fac = gr.Slider(1,8,2,step=1,label="倍率")
            btn = gr.Button("生成",variant="primary")
        with gr.Column():
            out_img = gr.Image(label="結果")
            
    # .queue() はGradioの通常機能として必要
    demo.queue()
    
    btn.click(
        fn=generate_ui, 
        inputs=[face_in,subj_in,add_in,addneg_in,cfg_sld,ip_sld,step_sld,w_sld,h_sld,up_ck,up_fac], 
        outputs=out_img
    )

# 6. FastAPI Mounting
app = FastAPI()

# FastAPIのエンドポイントを定義。こちらも内部で_generate_coreを呼ぶ
@app.post("/api/predict")
async def predict_endpoint(

    face_image: UploadFile = File(...),

    subject: str = Form("a woman"),

    add_prompt: str = Form(""),

    add_neg: str = Form(""),

    cfg: float = Form(6.0),

    ip_scale: float = Form(0.65),

    steps: int = Form(20),

    w: int = Form(512),

    h: int = Form(768),

    upscale: bool = Form(True),

    up_factor: float = Form(2.0)

):
    try:
        contents = await face_image.read()
        pil_image = Image.open(io.BytesIO(contents))
        
        # FastAPI経由の呼び出しも同じコア関数を利用
        result_pil_image = _generate_core(
            pil_image, subject, add_prompt, add_neg, cfg, ip_scale, 
            steps, w, h, upscale, up_factor
        )

        buffered = io.BytesIO()
        result_pil_image.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
        
        return {"image_base64": img_str}
    except Exception as e:
        traceback.print_exc()
        raise HTTPException(status_code=500, detail=str(e))

# GradioアプリをFastAPIアプリにマウント
app = gr.mount_gradio_app(app, demo, path="/")

print("Application startup script finished. Waiting for requests.")