Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
# app.py — InstantID × Beautiful Realistic Asians v7(ZeroGPU
|
2 |
-
# 2025-06-22
|
3 |
|
4 |
##############################################################################
|
5 |
# 0. 旧 API → 新 API 互換パッチ(必ず diffusers import の前に置く)
|
@@ -7,9 +7,9 @@
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
import huggingface_hub as _hf_hub
|
9 |
|
10 |
-
# diffusers-0.27 は cached_download() を呼び出すため、
|
11 |
if not hasattr(_hf_hub, "cached_download"):
|
12 |
-
_hf_hub.cached_download = hf_hub_download
|
13 |
|
14 |
##############################################################################
|
15 |
# 1. 標準 & 外部ライブラリ
|
@@ -37,7 +37,7 @@ from basicsr.utils.download_util import load_file_from_url
|
|
37 |
from realesrgan import RealESRGANer
|
38 |
|
39 |
##############################################################################
|
40 |
-
# 2. キャッシュ &
|
41 |
##############################################################################
|
42 |
PERSIST_BASE = Path("/data")
|
43 |
CACHE_ROOT = (
|
@@ -46,43 +46,54 @@ CACHE_ROOT = (
|
|
46 |
else Path.home() / ".cache" / "instantid_cache"
|
47 |
)
|
48 |
MODELS_DIR = CACHE_ROOT / "models"
|
49 |
-
LORA_DIR
|
50 |
UPSCALE_DIR = CACHE_ROOT / "realesrgan"
|
51 |
-
for
|
52 |
-
|
53 |
|
54 |
##############################################################################
|
55 |
-
# 3.
|
56 |
##############################################################################
|
57 |
-
|
58 |
-
"
|
59 |
-
"
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
)
|
73 |
|
74 |
##############################################################################
|
75 |
-
# 4.
|
76 |
##############################################################################
|
77 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
if dst.exists():
|
79 |
return dst
|
80 |
-
for
|
81 |
try:
|
82 |
subprocess.check_call(["curl", "-L", "-o", str(dst), url])
|
83 |
return dst
|
84 |
except subprocess.CalledProcessError:
|
85 |
-
|
86 |
load_file_from_url(url=url, model_dir=str(dst.parent), file_name=dst.name)
|
87 |
return dst
|
88 |
|
@@ -103,23 +114,18 @@ def initialize_pipelines():
|
|
103 |
|
104 |
print("[INIT] Downloading model assets …")
|
105 |
|
106 |
-
# 6-1
|
107 |
-
bra_ckpt =
|
108 |
-
ip_bin
|
109 |
-
ip_lora
|
110 |
-
|
111 |
-
|
112 |
-
controlnet = ControlNetModel.from_pretrained(
|
113 |
-
"CrucibleAI/ControlNetMediaPipeFace", # 公開リポジトリ :contentReference[oaicite:0]{index=0}
|
114 |
-
subfolder="diffusion_sd15", # SD-1.5 用フォルダ :contentReference[oaicite:1]{index=1}
|
115 |
-
torch_dtype=torch.float16,
|
116 |
-
cache_dir=str(MODELS_DIR),
|
117 |
)
|
118 |
|
119 |
-
# 6-
|
120 |
pipe_tmp = StableDiffusionControlNetPipeline.from_pretrained(
|
121 |
"runwayml/stable-diffusion-v1-5",
|
122 |
-
controlnet=
|
123 |
vae=AutoencoderKL.from_pretrained(
|
124 |
"stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16
|
125 |
),
|
@@ -133,16 +139,12 @@ def initialize_pipelines():
|
|
133 |
cache_dir=str(MODELS_DIR),
|
134 |
)
|
135 |
|
136 |
-
# 6-
|
137 |
-
# diffusers-0.27.2 では subfolder / weight_name が必須 :contentReference[oaicite:2]{index=2}
|
138 |
-
ip_dir = ip_bin.parent
|
139 |
pipe_tmp.load_ip_adapter(
|
140 |
-
str(
|
141 |
-
"", # subfolder
|
142 |
ip_bin.name # weight_name
|
143 |
)
|
144 |
-
|
145 |
-
# IP-Adapter の追加 LoRA を合流
|
146 |
AttnProcsLayers(pipe_tmp.unet.attn_processors).load_lora_weights(
|
147 |
ip_lora, adapter_name="ip_faceid", safe_load=True
|
148 |
)
|
@@ -151,22 +153,19 @@ def initialize_pipelines():
|
|
151 |
|
152 |
pipe = pipe_tmp
|
153 |
|
154 |
-
# 6-
|
155 |
face_analyser = FaceAnalysis(
|
156 |
name="buffalo_l", root=str(MODELS_DIR), providers=["CUDAExecutionProvider"]
|
157 |
)
|
158 |
face_analyser.prepare(ctx_id=0, det_size=(640, 640))
|
159 |
|
160 |
-
# 6-
|
161 |
-
|
162 |
upsampler = RealESRGANer(
|
163 |
scale=4,
|
164 |
-
model_path=str(
|
165 |
half=True,
|
166 |
-
tile=512,
|
167 |
-
tile_pad=10,
|
168 |
-
pre_pad=0,
|
169 |
-
gpu_id=0,
|
170 |
)
|
171 |
|
172 |
print("[INIT] Pipelines ready.")
|
@@ -185,9 +184,9 @@ NEG_PROMPT = (
|
|
185 |
)
|
186 |
|
187 |
##############################################################################
|
188 |
-
# 8.
|
189 |
##############################################################################
|
190 |
-
@spaces.GPU(duration=60)
|
191 |
def generate_core(
|
192 |
face_img: Image.Image,
|
193 |
subject: str,
|
@@ -206,14 +205,13 @@ def generate_core(
|
|
206 |
if pipe is None:
|
207 |
initialize_pipelines()
|
208 |
|
209 |
-
|
210 |
-
|
211 |
-
raise ValueError("顔が検出できませんでした。別の画像をお試しください。")
|
212 |
|
213 |
pipe.set_adapters(["ip_faceid"], adapter_weights=[ip_scale])
|
214 |
|
215 |
-
prompt
|
216 |
-
negative = NEG_PROMPT
|
217 |
|
218 |
result = pipe(
|
219 |
prompt=prompt,
|
@@ -222,11 +220,10 @@ def generate_core(
|
|
222 |
guidance_scale=float(cfg),
|
223 |
image=face_img,
|
224 |
control_image=None,
|
225 |
-
width=int(w),
|
226 |
-
height=int(h),
|
227 |
).images[0]
|
228 |
|
229 |
-
if upscale
|
230 |
upsampler.scale = 4 if up_factor == 4 else 8
|
231 |
result, _ = upsampler.enhance(np.array(result))
|
232 |
result = Image.fromarray(result)
|
@@ -244,41 +241,27 @@ with gr.Blocks(title="InstantID × BRA v7 (ZeroGPU)") as demo:
|
|
244 |
gr.Markdown("## InstantID × Beautiful Realistic Asians v7")
|
245 |
with gr.Row():
|
246 |
face_img = gr.Image(type="pil", label="Face ID", sources=["upload"])
|
247 |
-
subject
|
248 |
-
label="被写体説明(例: 30代日本人女性、黒髪セミロング)", interactive=True
|
249 |
-
)
|
250 |
add_prompt = gr.Textbox(label="追加プロンプト", interactive=True)
|
251 |
-
add_neg
|
252 |
with gr.Row():
|
253 |
-
cfg
|
254 |
ip_scale = gr.Slider(0.1, 1.0, value=0.6, step=0.05, label="IP-Adapter Weight")
|
255 |
with gr.Row():
|
256 |
steps = gr.Slider(10, 50, value=30, step=1, label="Steps")
|
257 |
-
w
|
258 |
-
h
|
259 |
with gr.Row():
|
260 |
-
upscale
|
261 |
up_factor = gr.Radio([4, 8], value=4, label="Upscale Factor")
|
262 |
-
run_btn
|
263 |
-
|
264 |
|
265 |
run_btn.click(
|
266 |
fn=generate_core,
|
267 |
-
inputs=[
|
268 |
-
|
269 |
-
|
270 |
-
add_prompt,
|
271 |
-
add_neg,
|
272 |
-
cfg,
|
273 |
-
ip_scale,
|
274 |
-
steps,
|
275 |
-
w,
|
276 |
-
h,
|
277 |
-
upscale,
|
278 |
-
up_factor,
|
279 |
-
],
|
280 |
-
outputs=output_img,
|
281 |
-
show_progress=True,
|
282 |
)
|
283 |
|
284 |
##############################################################################
|
@@ -297,25 +280,10 @@ async def api_generate(
|
|
297 |
file: UploadFile = File(...),
|
298 |
):
|
299 |
try:
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
subject=subject,
|
305 |
-
add_prompt="",
|
306 |
-
add_neg="",
|
307 |
-
cfg=cfg,
|
308 |
-
ip_scale=ip_scale,
|
309 |
-
steps=steps,
|
310 |
-
w=w,
|
311 |
-
h=h,
|
312 |
-
upscale=False,
|
313 |
-
up_factor=4,
|
314 |
-
)
|
315 |
-
buf = io.BytesIO()
|
316 |
-
res.save(buf, format="PNG")
|
317 |
-
b64 = base64.b64encode(buf.getvalue()).decode()
|
318 |
-
return {"image": f"data:image/png;base64,{b64}"}
|
319 |
except Exception as e:
|
320 |
traceback.print_exc()
|
321 |
raise HTTPException(status_code=500, detail=str(e))
|
@@ -323,4 +291,4 @@ async def api_generate(
|
|
323 |
##############################################################################
|
324 |
# 11. Launch(Gradio が自動で Uvicorn を起動)
|
325 |
##############################################################################
|
326 |
-
demo.queue(default_concurrency_limit=2).launch(share=False)
|
|
|
1 |
+
# app.py — InstantID × Beautiful Realistic Asians v7(ZeroGPU / ControlNetMediaPipeFace)
|
2 |
+
# 2025-06-22 版
|
3 |
|
4 |
##############################################################################
|
5 |
# 0. 旧 API → 新 API 互換パッチ(必ず diffusers import の前に置く)
|
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
import huggingface_hub as _hf_hub
|
9 |
|
10 |
+
# diffusers-0.27 は cached_download() を呼び出すため、HF-Hub ≥0.28 でも使えるように注入
|
11 |
if not hasattr(_hf_hub, "cached_download"):
|
12 |
+
_hf_hub.cached_download = hf_hub_download # :contentReference[oaicite:1]{index=1}
|
13 |
|
14 |
##############################################################################
|
15 |
# 1. 標準 & 外部ライブラリ
|
|
|
37 |
from realesrgan import RealESRGANer
|
38 |
|
39 |
##############################################################################
|
40 |
+
# 2. キャッシュ & 永続パス
|
41 |
##############################################################################
|
42 |
PERSIST_BASE = Path("/data")
|
43 |
CACHE_ROOT = (
|
|
|
46 |
else Path.home() / ".cache" / "instantid_cache"
|
47 |
)
|
48 |
MODELS_DIR = CACHE_ROOT / "models"
|
49 |
+
LORA_DIR = CACHE_ROOT / "lora"
|
50 |
UPSCALE_DIR = CACHE_ROOT / "realesrgan"
|
51 |
+
for p in (MODELS_DIR, LORA_DIR, UPSCALE_DIR):
|
52 |
+
p.mkdir(parents=True, exist_ok=True)
|
53 |
|
54 |
##############################################################################
|
55 |
+
# 3. モデル識別子 & ファイル名
|
56 |
##############################################################################
|
57 |
+
# すべて HF Hub 側にバイナリがあるため、curl ではなく hf_hub_download() を推奨
|
58 |
+
BRA_REPO = "i0switch-assets/Beautiful_Realistic_Asians_v7"
|
59 |
+
BRA_FILE = "beautiful_realistic_asians_v7_fp16.safetensors"
|
60 |
+
|
61 |
+
IP_REPO = "h94/IP-Adapter"
|
62 |
+
IP_FILE_BIN = "ip-adapter-plus-face_sd15.bin" # Git LFS バイナリ :contentReference[oaicite:2]{index=2}
|
63 |
+
|
64 |
+
IP_LORA_REPO = "h94/IP-Adapter-FaceID"
|
65 |
+
IP_FILE_LORA = "ip-adapter-faceid-plusv2_sd15_lora.safetensors" # Git LFS バイナリ
|
66 |
+
|
67 |
+
CN_REPO = "CrucibleAI/ControlNetMediaPipeFace" # 公開・無認証で DL 可 :contentReference[oaicite:3]{index=3}
|
68 |
+
CN_FOLDER = "diffusion_sd15" # SD-1.5 用フォルダ :contentReference[oaicite:4]{index=4}
|
69 |
+
|
70 |
+
REALESRGAN_REPO = "aimagelab/realesrgan"
|
71 |
+
REALESRGAN_FILE = "RealESRGAN_x4plus.pth"
|
|
|
72 |
|
73 |
##############################################################################
|
74 |
+
# 4. ダウンローダ(HF Hub 優先)
|
75 |
##############################################################################
|
76 |
+
def dl_hf(repo: str, filename: str, subfolder: Optional[str] = None) -> Path:
|
77 |
+
"""HF Hub から大容量バイナリを安全に取得(Git LFS ポインタ問題を回避)"""
|
78 |
+
return Path(
|
79 |
+
hf_hub_download(
|
80 |
+
repo_id=repo,
|
81 |
+
filename=filename,
|
82 |
+
subfolder=subfolder,
|
83 |
+
cache_dir=str(MODELS_DIR),
|
84 |
+
)
|
85 |
+
)
|
86 |
+
|
87 |
+
def dl_http(url: str, dst: Path):
|
88 |
+
"""小さなファイルのみ curl で取得(retry 付)"""
|
89 |
if dst.exists():
|
90 |
return dst
|
91 |
+
for _ in range(2):
|
92 |
try:
|
93 |
subprocess.check_call(["curl", "-L", "-o", str(dst), url])
|
94 |
return dst
|
95 |
except subprocess.CalledProcessError:
|
96 |
+
pass
|
97 |
load_file_from_url(url=url, model_dir=str(dst.parent), file_name=dst.name)
|
98 |
return dst
|
99 |
|
|
|
114 |
|
115 |
print("[INIT] Downloading model assets …")
|
116 |
|
117 |
+
# 6-1 主要モデル
|
118 |
+
bra_ckpt = dl_hf(BRA_REPO, BRA_FILE)
|
119 |
+
ip_bin = dl_hf(IP_REPO, IP_FILE_BIN)
|
120 |
+
ip_lora = dl_hf(IP_LORA_REPO, IP_FILE_LORA)
|
121 |
+
cn_model = ControlNetModel.from_pretrained(
|
122 |
+
CN_REPO, subfolder=CN_FOLDER, torch_dtype=torch.float16, cache_dir=str(MODELS_DIR)
|
|
|
|
|
|
|
|
|
|
|
123 |
)
|
124 |
|
125 |
+
# 6-2 Diffusers パイプライン
|
126 |
pipe_tmp = StableDiffusionControlNetPipeline.from_pretrained(
|
127 |
"runwayml/stable-diffusion-v1-5",
|
128 |
+
controlnet=cn_model,
|
129 |
vae=AutoencoderKL.from_pretrained(
|
130 |
"stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16
|
131 |
),
|
|
|
139 |
cache_dir=str(MODELS_DIR),
|
140 |
)
|
141 |
|
142 |
+
# 6-3 IP-Adapter ロード(必須 3 引数) :contentReference[oaicite:5]{index=5}
|
|
|
|
|
143 |
pipe_tmp.load_ip_adapter(
|
144 |
+
str(ip_bin.parent), # repo_or_path
|
145 |
+
"", # subfolder(直下なので空文字)
|
146 |
ip_bin.name # weight_name
|
147 |
)
|
|
|
|
|
148 |
AttnProcsLayers(pipe_tmp.unet.attn_processors).load_lora_weights(
|
149 |
ip_lora, adapter_name="ip_faceid", safe_load=True
|
150 |
)
|
|
|
153 |
|
154 |
pipe = pipe_tmp
|
155 |
|
156 |
+
# 6-4 InsightFace
|
157 |
face_analyser = FaceAnalysis(
|
158 |
name="buffalo_l", root=str(MODELS_DIR), providers=["CUDAExecutionProvider"]
|
159 |
)
|
160 |
face_analyser.prepare(ctx_id=0, det_size=(640, 640))
|
161 |
|
162 |
+
# 6-5 Real-ESRGAN
|
163 |
+
re_ckpt = dl_hf(REALESRGAN_REPO, REALESRGAN_FILE)
|
164 |
upsampler = RealESRGANer(
|
165 |
scale=4,
|
166 |
+
model_path=str(re_ckpt),
|
167 |
half=True,
|
168 |
+
tile=512, tile_pad=10, pre_pad=0, gpu_id=0
|
|
|
|
|
|
|
169 |
)
|
170 |
|
171 |
print("[INIT] Pipelines ready.")
|
|
|
184 |
)
|
185 |
|
186 |
##############################################################################
|
187 |
+
# 8. 生成コア(GPU アタッチ)
|
188 |
##############################################################################
|
189 |
+
@spaces.GPU(duration=60) # ZeroGPU で 60 s まで実行可 :contentReference[oaicite:6]{index=6}
|
190 |
def generate_core(
|
191 |
face_img: Image.Image,
|
192 |
subject: str,
|
|
|
205 |
if pipe is None:
|
206 |
initialize_pipelines()
|
207 |
|
208 |
+
if len(face_analyser.get(np.array(face_img))) == 0:
|
209 |
+
raise ValueError("顔が検出できません。別の画像でお試しください。")
|
|
|
210 |
|
211 |
pipe.set_adapters(["ip_faceid"], adapter_weights=[ip_scale])
|
212 |
|
213 |
+
prompt = BASE_PROMPT + subject + ", " + add_prompt
|
214 |
+
negative = NEG_PROMPT + ", " + add_neg
|
215 |
|
216 |
result = pipe(
|
217 |
prompt=prompt,
|
|
|
220 |
guidance_scale=float(cfg),
|
221 |
image=face_img,
|
222 |
control_image=None,
|
223 |
+
width=int(w), height=int(h),
|
|
|
224 |
).images[0]
|
225 |
|
226 |
+
if upscale:
|
227 |
upsampler.scale = 4 if up_factor == 4 else 8
|
228 |
result, _ = upsampler.enhance(np.array(result))
|
229 |
result = Image.fromarray(result)
|
|
|
241 |
gr.Markdown("## InstantID × Beautiful Realistic Asians v7")
|
242 |
with gr.Row():
|
243 |
face_img = gr.Image(type="pil", label="Face ID", sources=["upload"])
|
244 |
+
subject = gr.Textbox(label="被写体説明(例: 30代日本人女性、黒髪セミロング)", interactive=True)
|
|
|
|
|
245 |
add_prompt = gr.Textbox(label="追加プロンプト", interactive=True)
|
246 |
+
add_neg = gr.Textbox(label="追加ネガティブ", interactive=True)
|
247 |
with gr.Row():
|
248 |
+
cfg = gr.Slider(1, 20, value=7.5, step=0.5, label="CFG Scale")
|
249 |
ip_scale = gr.Slider(0.1, 1.0, value=0.6, step=0.05, label="IP-Adapter Weight")
|
250 |
with gr.Row():
|
251 |
steps = gr.Slider(10, 50, value=30, step=1, label="Steps")
|
252 |
+
w = gr.Slider(512, 1024, value=768, step=64, label="Width")
|
253 |
+
h = gr.Slider(512, 1024, value=768, step=64, label="Height")
|
254 |
with gr.Row():
|
255 |
+
upscale = gr.Checkbox(label="Real-ESRGAN Upscale", value=False)
|
256 |
up_factor = gr.Radio([4, 8], value=4, label="Upscale Factor")
|
257 |
+
run_btn = gr.Button("Generate")
|
258 |
+
output_im = gr.Image(type="pil", label="Result")
|
259 |
|
260 |
run_btn.click(
|
261 |
fn=generate_core,
|
262 |
+
inputs=[face_img, subject, add_prompt, add_neg,
|
263 |
+
cfg, ip_scale, steps, w, h, upscale, up_factor],
|
264 |
+
outputs=output_im, show_progress=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
)
|
266 |
|
267 |
##############################################################################
|
|
|
280 |
file: UploadFile = File(...),
|
281 |
):
|
282 |
try:
|
283 |
+
img = Image.open(io.BytesIO(await file.read())).convert("RGB") # noqa
|
284 |
+
res = generate_core(img, subject, "", "", cfg, ip_scale, steps, w, h, False, 4)
|
285 |
+
buf = io.BytesIO(); res.save(buf, format="PNG")
|
286 |
+
return {"image": "data:image/png;base64," + base64.b64encode(buf.getvalue()).decode()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
except Exception as e:
|
288 |
traceback.print_exc()
|
289 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
291 |
##############################################################################
|
292 |
# 11. Launch(Gradio が自動で Uvicorn を起動)
|
293 |
##############################################################################
|
294 |
+
demo.queue(default_concurrency_limit=2).launch(share=False) # :contentReference[oaicite:7]{index=7}
|