Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,218 +1,224 @@
|
|
1 |
-
# app.py — ZeroGPU対応版
|
2 |
-
import gradio as gr
|
3 |
-
import spaces
|
4 |
-
import torch
|
5 |
-
import numpy as np
|
6 |
-
from PIL import Image
|
7 |
-
import os
|
8 |
-
import subprocess
|
9 |
-
import traceback
|
10 |
-
import base64
|
11 |
-
import io
|
12 |
-
from pathlib import Path
|
13 |
-
|
14 |
-
# FastAPI関連(ハイブリッド構成のため維持)
|
15 |
-
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
16 |
-
|
17 |
-
# グローバル変数としてパイプラインを定義(初期値はNone)
|
18 |
-
pipe = None
|
19 |
-
face_app = None
|
20 |
-
upsampler = None
|
21 |
-
UPSCALE_OK = False
|
22 |
-
|
23 |
-
# 0. Cache dir & helpers (起動時に実行)
|
24 |
-
PERSIST_BASE = Path("/data")
|
25 |
-
CACHE_ROOT = (PERSIST_BASE / "instantid_cache" if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK)
|
26 |
-
else Path.home() / ".cache" / "instantid_cache")
|
27 |
-
MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR = CACHE_ROOT/"models", CACHE_ROOT/"models"/"Lora", CACHE_ROOT/"embeddings", CACHE_ROOT/"realesrgan"
|
28 |
-
|
29 |
-
for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR):
|
30 |
-
p.mkdir(parents=True, exist_ok=True)
|
31 |
-
|
32 |
-
def dl(url: str, dst: Path, attempts: int = 2):
|
33 |
-
if dst.exists(): return
|
34 |
-
for i in range(1, attempts + 1):
|
35 |
-
print(f"⬇ Downloading {dst.name} (try {i}/{attempts})")
|
36 |
-
if subprocess.call(["wget", "-q", "-O", str(dst), url]) == 0: return
|
37 |
-
raise RuntimeError(f"download failed → {url}")
|
38 |
-
|
39 |
-
# 1. Asset download (起動時に実行)
|
40 |
-
print("— Starting asset download check —")
|
41 |
-
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
|
42 |
-
dl("https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16", BASE_CKPT)
|
43 |
-
IP_BIN_FILE = LORA_DIR / "ip-adapter-plus-face_sd15.bin"
|
44 |
-
dl("https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter-plus-face_sd15.bin", IP_BIN_FILE)
|
45 |
-
LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
|
46 |
-
dl("https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors", LORA_FILE)
|
47 |
-
print("— Asset download check finished —")
|
48 |
-
|
49 |
-
|
50 |
-
# 2. パイプライン初期化関数 (GPU確保後に呼び出される)
|
51 |
-
def initialize_pipelines():
|
52 |
-
global pipe, face_app, upsampler, UPSCALE_OK
|
53 |
-
|
54 |
-
# torch/diffusers/onnxruntimeなどのインポートを関数内に移動
|
55 |
-
from diffusers import StableDiffusionPipeline, ControlNetModel, DPMSolverMultistepScheduler, AutoencoderKL
|
56 |
-
from insightface.app import FaceAnalysis
|
57 |
-
|
58 |
-
print("--- Initializing Pipelines (GPU is now available) ---")
|
59 |
-
|
60 |
-
device = torch.device("cuda") # ZeroGPUではGPUが保証されている
|
61 |
-
dtype = torch.float16
|
62 |
-
|
63 |
-
# FaceAnalysis
|
64 |
-
if face_app is None:
|
65 |
-
print("Initializing FaceAnalysis...")
|
66 |
-
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
67 |
-
face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers)
|
68 |
-
face_app.prepare(ctx_id=0, det_size=(640, 640))
|
69 |
-
print("FaceAnalysis initialized.")
|
70 |
-
|
71 |
-
# Main Pipeline
|
72 |
-
if pipe is None:
|
73 |
-
print("Loading ControlNet...")
|
74 |
-
controlnet = ControlNetModel.from_pretrained("InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype)
|
75 |
-
|
76 |
-
print("Loading StableDiffusionPipeline...")
|
77 |
-
pipe = StableDiffusionPipeline.from_single_file(BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2)
|
78 |
-
|
79 |
-
print("Moving pipeline to GPU...")
|
80 |
-
pipe.to(device) # .to(device)をここで呼ぶ
|
81 |
-
|
82 |
-
print("Loading VAE...")
|
83 |
-
pipe.vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype).to(device)
|
84 |
-
pipe.controlnet = controlnet
|
85 |
-
|
86 |
-
print("Configuring Scheduler...")
|
87 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
|
88 |
-
|
89 |
-
print("Loading IP-Adapter and LoRA...")
|
90 |
-
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=IP_BIN_FILE.name)
|
91 |
-
pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name)
|
92 |
-
|
93 |
-
pipe.set_ip_adapter_scale(0.65)
|
94 |
-
print("Main pipeline initialized.")
|
95 |
-
|
96 |
-
# Upscaler
|
97 |
-
if upsampler is None and not UPSCALE_OK: # 一度失敗したら再試行しない
|
98 |
-
print("Checking for Upscaler...")
|
99 |
-
try:
|
100 |
-
from basicsr.archs.rrdb_arch import RRDBNet
|
101 |
-
from realesrgan import RealESRGAN
|
102 |
-
rrdb = RRDBNet(3, 3, 64, 23, 32, scale=8)
|
103 |
-
upsampler = RealESRGAN(device, rrdb, scale=8)
|
104 |
-
upsampler.load_weights(str(UPSCALE_DIR / "RealESRGAN_x8plus.pth"))
|
105 |
-
UPSCALE_OK = True
|
106 |
-
print("Upscaler initialized successfully.")
|
107 |
-
except Exception as e:
|
108 |
-
UPSCALE_OK = False # 失敗を記録
|
109 |
-
print(f"Real-ESRGAN disabled → {e}")
|
110 |
-
|
111 |
-
print("--- All pipelines ready ---")
|
112 |
-
|
113 |
-
|
114 |
-
# 4. Core generation logic
|
115 |
-
BASE_PROMPT = ("(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k,\n""photo of {subject},\n""cinematic lighting, golden hour, rim light, shallow depth of field,\n""textured skin, high detail, shot on Canon EOS R5, 85 mm f/1.4, ISO 200,\n""<lora:ip-adapter-faceid-plusv2_sd15_lora:0.65>, (face),\n""(aesthetic:1.1), (cinematic:0.8)")
|
116 |
-
NEG_PROMPT = ("ng_deepnegative_v1_75t, CyberRealistic_Negative-neg, UnrealisticDream, ""(worst quality:2), (low quality:1.8), lowres, (jpeg artifacts:1.2), ""painting, sketch, illustration, drawing, cartoon, anime, cgi, render, 3d, ""monochrome, grayscale, text, logo, watermark, signature, username, ""(MajicNegative_V2:0.8), bad hands, extra digits, fused fingers, malformed limbs, ""missing arms, missing legs, (badhandv4:0.7), BadNegAnatomyV1-neg, skin blemishes, acnes, age spot, glans")
|
117 |
-
|
118 |
-
|
119 |
-
# ZeroGPUで実行される本体。durationを60秒に設定。
|
120 |
-
@spaces.GPU(duration=60)
|
121 |
-
def _generate_core(face_img, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress=gr.Progress(track_tqdm=True)):
|
122 |
-
# 初回呼び出し時にパイプラインを初期化
|
123 |
-
initialize_pipelines()
|
124 |
-
|
125 |
-
progress(0, desc="Generating image...")
|
126 |
-
prompt = BASE_PROMPT.format(subject=(subject.strip() or "a beautiful 20yo woman"))
|
127 |
-
if add_prompt: prompt += ", " + add_prompt
|
128 |
-
neg = NEG_PROMPT + (", " + add_neg if add_neg else "")
|
129 |
-
pipe.set_ip_adapter_scale(ip_scale)
|
130 |
-
|
131 |
-
result = pipe(prompt=prompt, negative_prompt=neg, ip_adapter_image=face_img, image=face_img, controlnet_conditioning_scale=0.9, num_inference_steps=int(steps) + 5, guidance_scale=cfg, width=int(w), height=int(h)).images[0]
|
132 |
-
|
133 |
-
if upscale and UPSCALE_OK:
|
134 |
-
progress(0.8, desc="Upscaling...")
|
135 |
-
up, _ = upsampler.enhance(cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR), outscale=up_factor)
|
136 |
-
result = Image.fromarray(cv2.cvtColor(up, cv2.COLOR_BGR2RGB))
|
137 |
-
|
138 |
-
return result
|
139 |
-
|
140 |
-
# GradioのUIから呼び出されるラッパー関数
|
141 |
-
def generate_ui(face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress=gr.Progress(track_tqdm=True)):
|
142 |
-
if face_np is None: raise gr.Error("顔画像をアップロードしてください。")
|
143 |
-
# NumPy配列をPillow画像に変換
|
144 |
-
face_img = Image.fromarray(face_np)
|
145 |
-
return _generate_core(face_img, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress)
|
146 |
-
|
147 |
-
|
148 |
-
# 5. Gradio UI Definition
|
149 |
-
with gr.Blocks() as demo:
|
150 |
-
gr.Markdown("# InstantID – Beautiful Realistic Asians v7 (ZeroGPU)")
|
151 |
-
with gr.Row():
|
152 |
-
with gr.Column():
|
153 |
-
face_in = gr.Image(label="顔写真",type="numpy")
|
154 |
-
subj_in = gr.Textbox(label="被写体説明",placeholder="e.g. woman in black suit, smiling")
|
155 |
-
add_in = gr.Textbox(label="追加プロンプト")
|
156 |
-
addneg_in = gr.Textbox(label="追加ネガティブ")
|
157 |
-
with gr.Accordion("詳細設定", open=False):
|
158 |
-
ip_sld = gr.Slider(0,1.5,0.65,step=0.05,label="IP‑Adapter scale")
|
159 |
-
cfg_sld = gr.Slider(1,15,6,step=0.5,label="CFG")
|
160 |
-
step_sld = gr.Slider(10,50,20,step=1,label="Steps")
|
161 |
-
w_sld = gr.Slider(512,1024,512,step=64,label="幅")
|
162 |
-
h_sld = gr.Slider(512,1024,768,step=64,label="高さ")
|
163 |
-
up_ck = gr.Checkbox(label="アップスケール",value=True)
|
164 |
-
up_fac = gr.Slider(1,8,2,step=1,label="倍率")
|
165 |
-
btn = gr.Button("生成",variant="primary")
|
166 |
-
with gr.Column():
|
167 |
-
out_img = gr.Image(label="結果")
|
168 |
-
|
169 |
-
# .queue() はGradioの通常機能として必要
|
170 |
-
demo.queue()
|
171 |
-
|
172 |
-
btn.click(
|
173 |
-
fn=generate_ui,
|
174 |
-
inputs=[face_in,subj_in,add_in,addneg_in,cfg_sld,ip_sld,step_sld,w_sld,h_sld,up_ck,up_fac],
|
175 |
-
outputs=out_img
|
176 |
-
)
|
177 |
-
|
178 |
-
# 6. FastAPI Mounting
|
179 |
-
app = FastAPI()
|
180 |
-
|
181 |
-
# FastAPIのエンドポイントを定義。こちらも内部で_generate_coreを呼ぶ
|
182 |
-
@app.post("/api/predict")
|
183 |
-
async def predict_endpoint(
|
184 |
-
face_image: UploadFile = File(...),
|
185 |
-
subject: str = Form("a woman"),
|
186 |
-
add_prompt: str = Form(""),
|
187 |
-
add_neg: str = Form(""),
|
188 |
-
cfg: float = Form(6.0),
|
189 |
-
ip_scale: float = Form(0.65),
|
190 |
-
steps: int = Form(20),
|
191 |
-
w: int = Form(512),
|
192 |
-
h: int = Form(768),
|
193 |
-
upscale: bool = Form(True),
|
194 |
-
up_factor: float = Form(2.0)
|
195 |
-
):
|
196 |
-
try:
|
197 |
-
contents = await face_image.read()
|
198 |
-
pil_image = Image.open(io.BytesIO(contents))
|
199 |
-
|
200 |
-
# FastAPI経由の呼び出しも同じコア関数を利用
|
201 |
-
result_pil_image = _generate_core(
|
202 |
-
pil_image, subject, add_prompt, add_neg, cfg, ip_scale,
|
203 |
-
steps, w, h, upscale, up_factor
|
204 |
-
)
|
205 |
-
|
206 |
-
buffered = io.BytesIO()
|
207 |
-
result_pil_image.save(buffered, format="PNG")
|
208 |
-
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
209 |
-
|
210 |
-
return {"image_base64": img_str}
|
211 |
-
except Exception as e:
|
212 |
-
traceback.print_exc()
|
213 |
-
raise HTTPException(status_code=500, detail=str(e))
|
214 |
-
|
215 |
-
# GradioアプリをFastAPIアプリにマウント
|
216 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
217 |
-
|
218 |
-
print("Application startup script finished. Waiting for requests.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py — ZeroGPU対応版
|
2 |
+
import gradio as gr
|
3 |
+
import spaces
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import os
|
8 |
+
import subprocess
|
9 |
+
import traceback
|
10 |
+
import base64
|
11 |
+
import io
|
12 |
+
from pathlib import Path
|
13 |
+
|
14 |
+
# FastAPI関連(ハイブリッド構成のため維持)
|
15 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
16 |
+
|
17 |
+
# グローバル変数としてパイプラインを定義(初期値はNone)
|
18 |
+
pipe = None
|
19 |
+
face_app = None
|
20 |
+
upsampler = None
|
21 |
+
UPSCALE_OK = False
|
22 |
+
|
23 |
+
# 0. Cache dir & helpers (起動時に実行)
|
24 |
+
PERSIST_BASE = Path("/data")
|
25 |
+
CACHE_ROOT = (PERSIST_BASE / "instantid_cache" if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK)
|
26 |
+
else Path.home() / ".cache" / "instantid_cache")
|
27 |
+
MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR = CACHE_ROOT/"models", CACHE_ROOT/"models"/"Lora", CACHE_ROOT/"embeddings", CACHE_ROOT/"realesrgan"
|
28 |
+
|
29 |
+
for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR):
|
30 |
+
p.mkdir(parents=True, exist_ok=True)
|
31 |
+
|
32 |
+
def dl(url: str, dst: Path, attempts: int = 2):
|
33 |
+
if dst.exists(): return
|
34 |
+
for i in range(1, attempts + 1):
|
35 |
+
print(f"⬇ Downloading {dst.name} (try {i}/{attempts})")
|
36 |
+
if subprocess.call(["wget", "-q", "-O", str(dst), url]) == 0: return
|
37 |
+
raise RuntimeError(f"download failed → {url}")
|
38 |
+
|
39 |
+
# 1. Asset download (起動時に実行)
|
40 |
+
print("— Starting asset download check —")
|
41 |
+
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
|
42 |
+
dl("https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16", BASE_CKPT)
|
43 |
+
IP_BIN_FILE = LORA_DIR / "ip-adapter-plus-face_sd15.bin"
|
44 |
+
dl("https://huggingface.co/h94/IP-Adapter/resolve/main/models/ip-adapter-plus-face_sd15.bin", IP_BIN_FILE)
|
45 |
+
LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
|
46 |
+
dl("https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors", LORA_FILE)
|
47 |
+
print("— Asset download check finished —")
|
48 |
+
|
49 |
+
|
50 |
+
# 2. パイプライン初期化関数 (GPU確保後に呼び出される)
|
51 |
+
def initialize_pipelines():
|
52 |
+
global pipe, face_app, upsampler, UPSCALE_OK
|
53 |
+
|
54 |
+
# torch/diffusers/onnxruntimeなどのインポートを関数内に移動
|
55 |
+
from diffusers import StableDiffusionPipeline, ControlNetModel, DPMSolverMultistepScheduler, AutoencoderKL
|
56 |
+
from insightface.app import FaceAnalysis
|
57 |
+
|
58 |
+
print("--- Initializing Pipelines (GPU is now available) ---")
|
59 |
+
|
60 |
+
device = torch.device("cuda") # ZeroGPUではGPUが保証されている
|
61 |
+
dtype = torch.float16
|
62 |
+
|
63 |
+
# FaceAnalysis
|
64 |
+
if face_app is None:
|
65 |
+
print("Initializing FaceAnalysis...")
|
66 |
+
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
67 |
+
face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers)
|
68 |
+
face_app.prepare(ctx_id=0, det_size=(640, 640))
|
69 |
+
print("FaceAnalysis initialized.")
|
70 |
+
|
71 |
+
# Main Pipeline
|
72 |
+
if pipe is None:
|
73 |
+
print("Loading ControlNet...")
|
74 |
+
controlnet = ControlNetModel.from_pretrained("InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype)
|
75 |
+
|
76 |
+
print("Loading StableDiffusionPipeline...")
|
77 |
+
pipe = StableDiffusionPipeline.from_single_file(BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2)
|
78 |
+
|
79 |
+
print("Moving pipeline to GPU...")
|
80 |
+
pipe.to(device) # .to(device)をここで呼ぶ
|
81 |
+
|
82 |
+
print("Loading VAE...")
|
83 |
+
pipe.vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=dtype).to(device)
|
84 |
+
pipe.controlnet = controlnet
|
85 |
+
|
86 |
+
print("Configuring Scheduler...")
|
87 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++")
|
88 |
+
|
89 |
+
print("Loading IP-Adapter and LoRA...")
|
90 |
+
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name=IP_BIN_FILE.name)
|
91 |
+
pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name)
|
92 |
+
|
93 |
+
pipe.set_ip_adapter_scale(0.65)
|
94 |
+
print("Main pipeline initialized.")
|
95 |
+
|
96 |
+
# Upscaler
|
97 |
+
if upsampler is None and not UPSCALE_OK: # 一度失敗したら再試行しない
|
98 |
+
print("Checking for Upscaler...")
|
99 |
+
try:
|
100 |
+
from basicsr.archs.rrdb_arch import RRDBNet
|
101 |
+
from realesrgan import RealESRGAN
|
102 |
+
rrdb = RRDBNet(3, 3, 64, 23, 32, scale=8)
|
103 |
+
upsampler = RealESRGAN(device, rrdb, scale=8)
|
104 |
+
upsampler.load_weights(str(UPSCALE_DIR / "RealESRGAN_x8plus.pth"))
|
105 |
+
UPSCALE_OK = True
|
106 |
+
print("Upscaler initialized successfully.")
|
107 |
+
except Exception as e:
|
108 |
+
UPSCALE_OK = False # 失敗を記録
|
109 |
+
print(f"Real-ESRGAN disabled → {e}")
|
110 |
+
|
111 |
+
print("--- All pipelines ready ---")
|
112 |
+
|
113 |
+
|
114 |
+
# 4. Core generation logic
|
115 |
+
BASE_PROMPT = ("(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k,\n""photo of {subject},\n""cinematic lighting, golden hour, rim light, shallow depth of field,\n""textured skin, high detail, shot on Canon EOS R5, 85 mm f/1.4, ISO 200,\n""<lora:ip-adapter-faceid-plusv2_sd15_lora:0.65>, (face),\n""(aesthetic:1.1), (cinematic:0.8)")
|
116 |
+
NEG_PROMPT = ("ng_deepnegative_v1_75t, CyberRealistic_Negative-neg, UnrealisticDream, ""(worst quality:2), (low quality:1.8), lowres, (jpeg artifacts:1.2), ""painting, sketch, illustration, drawing, cartoon, anime, cgi, render, 3d, ""monochrome, grayscale, text, logo, watermark, signature, username, ""(MajicNegative_V2:0.8), bad hands, extra digits, fused fingers, malformed limbs, ""missing arms, missing legs, (badhandv4:0.7), BadNegAnatomyV1-neg, skin blemishes, acnes, age spot, glans")
|
117 |
+
|
118 |
+
|
119 |
+
# ZeroGPUで実行される本体。durationを60秒に設定。
|
120 |
+
@spaces.GPU(duration=60)
|
121 |
+
def _generate_core(face_img, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress=gr.Progress(track_tqdm=True)):
|
122 |
+
# 初回呼び出し時にパイプラインを初期化
|
123 |
+
initialize_pipelines()
|
124 |
+
|
125 |
+
progress(0, desc="Generating image...")
|
126 |
+
prompt = BASE_PROMPT.format(subject=(subject.strip() or "a beautiful 20yo woman"))
|
127 |
+
if add_prompt: prompt += ", " + add_prompt
|
128 |
+
neg = NEG_PROMPT + (", " + add_neg if add_neg else "")
|
129 |
+
pipe.set_ip_adapter_scale(ip_scale)
|
130 |
+
|
131 |
+
result = pipe(prompt=prompt, negative_prompt=neg, ip_adapter_image=face_img, image=face_img, controlnet_conditioning_scale=0.9, num_inference_steps=int(steps) + 5, guidance_scale=cfg, width=int(w), height=int(h)).images[0]
|
132 |
+
|
133 |
+
if upscale and UPSCALE_OK:
|
134 |
+
progress(0.8, desc="Upscaling...")
|
135 |
+
up, _ = upsampler.enhance(cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR), outscale=up_factor)
|
136 |
+
result = Image.fromarray(cv2.cvtColor(up, cv2.COLOR_BGR2RGB))
|
137 |
+
|
138 |
+
return result
|
139 |
+
|
140 |
+
# GradioのUIから呼び出されるラッパー関数
|
141 |
+
def generate_ui(face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress=gr.Progress(track_tqdm=True)):
|
142 |
+
if face_np is None: raise gr.Error("顔画像をアップロードしてください。")
|
143 |
+
# NumPy配列をPillow画像に変換
|
144 |
+
face_img = Image.fromarray(face_np)
|
145 |
+
return _generate_core(face_img, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress)
|
146 |
+
|
147 |
+
|
148 |
+
# 5. Gradio UI Definition
|
149 |
+
with gr.Blocks() as demo:
|
150 |
+
gr.Markdown("# InstantID – Beautiful Realistic Asians v7 (ZeroGPU)")
|
151 |
+
with gr.Row():
|
152 |
+
with gr.Column():
|
153 |
+
face_in = gr.Image(label="顔写真",type="numpy")
|
154 |
+
subj_in = gr.Textbox(label="被写体説明",placeholder="e.g. woman in black suit, smiling")
|
155 |
+
add_in = gr.Textbox(label="追加プロンプト")
|
156 |
+
addneg_in = gr.Textbox(label="追加ネガティブ")
|
157 |
+
with gr.Accordion("詳細設定", open=False):
|
158 |
+
ip_sld = gr.Slider(0,1.5,0.65,step=0.05,label="IP‑Adapter scale")
|
159 |
+
cfg_sld = gr.Slider(1,15,6,step=0.5,label="CFG")
|
160 |
+
step_sld = gr.Slider(10,50,20,step=1,label="Steps")
|
161 |
+
w_sld = gr.Slider(512,1024,512,step=64,label="幅")
|
162 |
+
h_sld = gr.Slider(512,1024,768,step=64,label="高さ")
|
163 |
+
up_ck = gr.Checkbox(label="アップスケール",value=True)
|
164 |
+
up_fac = gr.Slider(1,8,2,step=1,label="倍率")
|
165 |
+
btn = gr.Button("生成",variant="primary")
|
166 |
+
with gr.Column():
|
167 |
+
out_img = gr.Image(label="結果")
|
168 |
+
|
169 |
+
# .queue() はGradioの通常機能として必要
|
170 |
+
demo.queue()
|
171 |
+
|
172 |
+
btn.click(
|
173 |
+
fn=generate_ui,
|
174 |
+
inputs=[face_in,subj_in,add_in,addneg_in,cfg_sld,ip_sld,step_sld,w_sld,h_sld,up_ck,up_fac],
|
175 |
+
outputs=out_img
|
176 |
+
)
|
177 |
+
|
178 |
+
# 6. FastAPI Mounting
|
179 |
+
app = FastAPI()
|
180 |
+
|
181 |
+
# FastAPIのエンドポイントを定義。こちらも内部で_generate_coreを呼ぶ
|
182 |
+
@app.post("/api/predict")
|
183 |
+
async def predict_endpoint(
|
184 |
+
face_image: UploadFile = File(...),
|
185 |
+
subject: str = Form("a woman"),
|
186 |
+
add_prompt: str = Form(""),
|
187 |
+
add_neg: str = Form(""),
|
188 |
+
cfg: float = Form(6.0),
|
189 |
+
ip_scale: float = Form(0.65),
|
190 |
+
steps: int = Form(20),
|
191 |
+
w: int = Form(512),
|
192 |
+
h: int = Form(768),
|
193 |
+
upscale: bool = Form(True),
|
194 |
+
up_factor: float = Form(2.0)
|
195 |
+
):
|
196 |
+
try:
|
197 |
+
contents = await face_image.read()
|
198 |
+
pil_image = Image.open(io.BytesIO(contents))
|
199 |
+
|
200 |
+
# FastAPI経由の呼び出しも同じコア関数を利用
|
201 |
+
result_pil_image = _generate_core(
|
202 |
+
pil_image, subject, add_prompt, add_neg, cfg, ip_scale,
|
203 |
+
steps, w, h, upscale, up_factor
|
204 |
+
)
|
205 |
+
|
206 |
+
buffered = io.BytesIO()
|
207 |
+
result_pil_image.save(buffered, format="PNG")
|
208 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
209 |
+
|
210 |
+
return {"image_base64": img_str}
|
211 |
+
except Exception as e:
|
212 |
+
traceback.print_exc()
|
213 |
+
raise HTTPException(status_code=500, detail=str(e))
|
214 |
+
|
215 |
+
# GradioアプリをFastAPIアプリにマウント
|
216 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
217 |
+
|
218 |
+
print("Application startup script finished. Waiting for requests.")
|
219 |
+
# app.py の末尾に追加
|
220 |
+
|
221 |
+
if __name__ == "__main__":
|
222 |
+
import uvicorn
|
223 |
+
# SpacesでGradioアプリを動かす際の標準ポートは7860です
|
224 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|