# app.py — InstantID × Beautiful Realistic Asians v7 (ZeroGPU-friendly, persistent cache) """Persistent-cache backend for InstantID portrait generation. * 依存モデルは /data が書込可ならそこへ、それ以外は ~/.cache に保存 * wget を使った簡易リトライ DL """ # --- ★ Monkey-Patch: torchvision 0.17+ で消えた functional_tensor を補完 --- import types, sys from torchvision.transforms import functional as F mod = types.ModuleType("torchvision.transforms.functional_tensor") # 必要なのは rgb_to_grayscale だけなのでこれだけエイリアス mod.rgb_to_grayscale = F.rgb_to_grayscale sys.modules["torchvision.transforms.functional_tensor"] = mod # --------------------------------------------------------------------------- import os, subprocess, cv2, torch, spaces, gradio as gr, numpy as np from pathlib import Path from PIL import Image from diffusers import ( StableDiffusionPipeline, ControlNetModel, DPMSolverMultistepScheduler, AutoencoderKL, ) from insightface.app import FaceAnalysis ############################################################################## # 0. キャッシュ用ディレクトリ ############################################################################## PERSIST_BASE = Path("/data") CACHE_ROOT = ( PERSIST_BASE / "instantid_cache" if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK) else Path.home() / ".cache" / "instantid_cache" ) print("cache →", CACHE_ROOT) MODELS_DIR = CACHE_ROOT / "models" LORA_DIR = MODELS_DIR / "Lora" # FaceID LoRA などを置く EMB_DIR = CACHE_ROOT / "embeddings" UPSCALE_DIR = CACHE_ROOT / "realesrgan" for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR): p.mkdir(parents=True, exist_ok=True) def dl(url: str, dst: Path, attempts: int = 2): """wget + リトライの簡易ダウンローダ""" if dst.exists(): print("✓", dst.relative_to(CACHE_ROOT)); return for i in range(1, attempts + 1): print(f"⬇ {dst.name} (try {i}/{attempts})") if subprocess.call(["wget", "-q", "-O", str(dst), url]) == 0: return raise RuntimeError(f"download failed → {url}") ############################################################################## # 1. 必要アセットのダウンロード ############################################################################## print("— asset check —") # 1-A. ベース checkpoint BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors" dl( "https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16", BASE_CKPT, ) # 1-B. FaceID LoRA(Δのみ) LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors" dl( "https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors", LORA_FILE, ) # 1-C. textual inversion Embeddings EMB_URLS = { "ng_deepnegative_v1_75t.pt": [ "https://huggingface.co/datasets/gsdf/EasyNegative/resolve/main/ng_deepnegative_v1_75t.pt", "https://huggingface.co/mrpxl2/animetarotV51.safetensors/raw/cc3008c0148061896549a995cc297aef0af4ef1b/ng_deepnegative_v1_75t.pt", ], "badhandv4.pt": [ "https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/badhandv4.pt", "https://huggingface.co/nolanaatama/embeddings/raw/main/badhandv4.pt", ], "CyberRealistic_Negative-neg.pt": [ "https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/CyberRealistic_Negative-neg.pt", "https://huggingface.co/wsj1995/embeddings/raw/main/CyberRealistic_Negative-neg.civitai.info", ], "UnrealisticDream.pt": [ "https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/UnrealisticDream.pt", "https://huggingface.co/imagepipeline/UnrealisticDream/raw/main/f84133b4-aad8-44be-b9ce-7e7e3a8c111f.pt", ], } for fname, urls in EMB_URLS.items(): dst = EMB_DIR / fname for idx, u in enumerate(urls, 1): try: dl(u, dst); break except RuntimeError: if idx == len(urls): raise print(" ↳ fallback URL …") # 1-D. Real-ESRGAN weights (×8) RRG_WEIGHTS = UPSCALE_DIR / "RealESRGAN_x8plus.pth" RRG_URLS = [ "https://huggingface.co/NoCrypt/Superscale_RealESRGAN/resolve/main/RealESRGAN_x8plus.pth", "https://huggingface.co/ai-forever/Real-ESRGAN/raw/main/RealESRGAN_x8.pth", "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/8x_NMKD-Superscale_100k.pth", ] for idx, link in enumerate(RRG_URLS, 1): try: dl(link, RRG_WEIGHTS); break except RuntimeError: if idx == len(RRG_URLS): raise print(" ↳ fallback URL …") ############################################################################## # 2. ランタイム初期化 ############################################################################## device = torch.device("cuda" if torch.cuda.is_available() else "cpu") dtype = torch.float16 if torch.cuda.is_available() else torch.float32 print("device:", device, "| dtype:", dtype) providers = ( ["CUDAExecutionProvider", "CPUExecutionProvider"] if torch.cuda.is_available() else ["CPUExecutionProvider"] ) face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers) face_app.prepare(ctx_id=(0 if torch.cuda.is_available() else -1), det_size=(640, 640)) # ControlNet + SD パイプライン controlnet = ControlNetModel.from_pretrained( "InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype ) pipe = StableDiffusionPipeline.from_single_file( BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2 ) pipe.vae = AutoencoderKL.from_pretrained( "stabilityai/sd-vae-ft-mse", torch_dtype=dtype ).to(device) pipe.controlnet = controlnet pipe.scheduler = DPMSolverMultistepScheduler.from_config( pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++" ) # --- ここが核心:画像エンコーダ込みで公式レポから直接ロード ------------------ pipe.load_ip_adapter( "h94/IP-Adapter", # Hugging Face Hub ID subfolder="models", # ip-adapter-plus-face_sd15.bin が入っているフォルダ weight_name="ip-adapter-plus-face_sd15.bin", ) # --------------------------------------------------------------------------- # FaceID LoRA(差分 LoRA のみ) pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name) pipe.set_ip_adapter_scale(0.65) # textual inversion 読み込み for emb in EMB_DIR.glob("*.*"): try: pipe.load_textual_inversion(emb, token=emb.stem) print("emb loaded →", emb.stem) except Exception: print("emb skip →", emb.name) pipe.to(device) print("pipeline ready ✔") ############################################################################## # 3. アップスケーラ ############################################################################## try: from basicsr.archs.rrdb_arch import RRDBNet try: from realesrgan import RealESRGAN except ImportError: from realesrgan import RealESRGANer as RealESRGAN rrdb = RRDBNet(3, 3, 64, 23, 32, scale=8) upsampler = RealESRGAN(device, rrdb, scale=8) upsampler.load_weights(str(RRG_WEIGHTS)) UPSCALE_OK = True except Exception as e: print("Real-ESRGAN disabled →", e) UPSCALE_OK = False ############################################################################## # 4. プロンプト & 生成関数 ############################################################################## BASE_PROMPT = ( "(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k,\n" "photo of {subject},\n" "cinematic lighting, golden hour, rim light, shallow depth of field,\n" "textured skin, high detail, shot on Canon EOS R5, 85 mm f/1.4, ISO 200,\n" ", (face),\n" "(aesthetic:1.1), (cinematic:0.8)" ) NEG_PROMPT = ( "ng_deepnegative_v1_75t, CyberRealistic_Negative-neg, UnrealisticDream, " "(worst quality:2), (low quality:1.8), lowres, (jpeg artifacts:1.2), " "painting, sketch, illustration, drawing, cartoon, anime, cgi, render, 3d, " "monochrome, grayscale, text, logo, watermark, signature, username, " "(MajicNegative_V2:0.8), bad hands, extra digits, fused fingers, malformed limbs, " "missing arms, missing legs, (badhandv4:0.7), BadNegAnatomyV1-neg, skin blemishes, acnes, age spot, glans" ) @spaces.GPU(duration=90) def generate( face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor, progress=gr.Progress(track_tqdm=True), ): if face_np is None or face_np.size == 0: raise gr.Error("顔画像をアップロードしてください。") prompt = BASE_PROMPT.format(subject=(subject.strip() or "a beautiful 20yo woman")) if add_prompt: prompt += ", " + add_prompt neg = NEG_PROMPT + (", " + add_neg if add_neg else "") pipe.set_ip_adapter_scale(ip_scale) img_in = Image.fromarray(face_np) result = pipe( prompt=prompt, negative_prompt=neg, ip_adapter_image=img_in, image=img_in, controlnet_conditioning_scale=0.9, num_inference_steps=int(steps) + 5, guidance_scale=cfg, width=int(w), height=int(h), ).images[0] if upscale: if UPSCALE_OK: up, _ = upsampler.enhance( cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR), outscale=up_factor ) result = Image.fromarray(cv2.cvtColor(up, cv2.COLOR_BGR2RGB)) else: result = result.resize( (int(result.width * up_factor), int(result.height * up_factor)), Image.LANCZOS, ) return result ############################################################################## # 5. Gradio UI ############################################################################## with gr.Blocks() as demo: gr.Markdown("# InstantID – Beautiful Realistic Asians v7") with gr.Row(): with gr.Column(): face_in = gr.Image(label="顔写真", type="numpy") subj_in = gr.Textbox(label="被写体説明", placeholder="e.g. woman in black suit, smiling") add_in = gr.Textbox(label="追加プロンプト") addneg_in = gr.Textbox(label="追加ネガティブ") ip_sld = gr.Slider(0, 1.5, 0.65, step=0.05, label="IP-Adapter scale") cfg_sld = gr.Slider(1, 15, 6, step=0.5, label="CFG") step_sld = gr.Slider(10, 50, 20, step=1, label="Steps") w_sld = gr.Slider(512, 1024, 512, step=64, label="幅") h_sld = gr.Slider(512, 1024, 768, step=64, label="高さ") up_ck = gr.Checkbox(label="アップスケール", value=True) up_fac = gr.Slider(1, 8, 2, step=1, label="倍率") btn = gr.Button("生成", variant="primary") with gr.Column(): out_img = gr.Image(label="結果") btn.click( generate, [face_in, subj_in, add_in, addneg_in, cfg_sld, ip_sld, step_sld, w_sld, h_sld, up_ck, up_fac], out_img, api_name="predict", ) print("launching …") demo.queue().launch(show_error=True)