Spaces:
Starting
on
Zero
Starting
on
Zero
File size: 8,893 Bytes
bebb126 3063fd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# app.py — BRA v7 (AIGaming repo) × InstantID × ZeroGPU
# 2025-06-22
##############################################################################
# torchvision 0.17+ 互換パッチ(functional_tensor → functional)
##############################################################################
import sys, types
try:
import torchvision.transforms.functional as F
if "torchvision.transforms.functional_tensor" not in sys.modules:
faux = types.ModuleType("torchvision.transforms.functional_tensor")
# 必要最低限だけ持たせる
faux.rgb_to_grayscale = getattr(F, "rgb_to_grayscale", None)
sys.modules["torchvision.transforms.functional_tensor"] = faux
except Exception as e:
print("[WARN] torchvision compatibility patch failed:", e)
##############################################################################
# 0. diffusers-0.27 互換: cached_download() パッチ
##############################################################################
from huggingface_hub import hf_hub_download
import huggingface_hub as _hf
if not hasattr(_hf, "cached_download"):
_hf.cached_download = hf_hub_download
##############################################################################
# 1. ライブラリ
##############################################################################
import os, io, base64, subprocess, traceback
from pathlib import Path
from typing import Optional
import numpy as np
import torch, gradio as gr, spaces
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
from PIL import Image
from diffusers import (
StableDiffusionControlNetPipeline,
ControlNetModel,
DPMSolverMultistepScheduler,
)
from diffusers.loaders import AttnProcsLayers
from insightface.app import FaceAnalysis
from realesrgan import RealESRGANer
##############################################################################
# 2. キャッシュパス
##############################################################################
ROOT = Path("/data") if Path("/data").exists() else Path.home() / ".cache/instantid"
MODELS = ROOT / "models"; LORA = ROOT / "lora"; UPSCALE = ROOT / "realesrgan"
for p in (MODELS, LORA, UPSCALE): p.mkdir(parents=True, exist_ok=True)
##############################################################################
# 3. モデル ID / ファイル
##############################################################################
# --- BRA v7 (公開) ---
BRA_REPO = "AIGaming/beautiful_realistic_asians"
BRA_FILE = "beautifulRealistic_v7.safetensors"
BRA_REV = "801a9b1999dd7018e58a1e2b432fdccd3d1d723d" # 固定 revision
# --- IP-Adapter 本体 & LoRA ---
IP_REPO, IP_BIN = "h94/IP-Adapter", "models/ip-adapter-plus-face_sd15.bin"
LORA_REPO,IP_LORA = "h94/IP-Adapter-FaceID", "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
# --- ControlNet (MediaPipe Face) ---
CN_REPO, CN_SUBF = "CrucibleAI/ControlNetMediaPipeFace", "diffusion_sd15"
# --- Real-ESRGAN ---
ESRGAN_REPO, ESRGAN_FILE = "aimagelab/realesrgan", "RealESRGAN_x4plus.pth"
##############################################################################
# 4. HF Hub ダウンロード
##############################################################################
def dl(repo: str, file: str, sub: str | None = None, rev: str | None = None) -> Path:
return Path(hf_hub_download(repo, file, subfolder=sub,
revision=rev, cache_dir=str(MODELS)))
##############################################################################
# 5. グローバル
##############################################################################
pipe: Optional[StableDiffusionControlNetPipeline] = None
face_analyser: Optional[FaceAnalysis] = None
upsampler: Optional[RealESRGANer] = None
##############################################################################
# 6. 初期化
##############################################################################
def init():
global pipe, face_analyser, upsampler
if pipe is not None:
return
print("[INIT] downloading models…")
# 6-1 BRA v7
bra_ckpt = dl(BRA_REPO, BRA_FILE, rev=BRA_REV)
# 6-2 ControlNet
cn = ControlNetModel.from_pretrained(
CN_REPO, subfolder=CN_SUBF, torch_dtype=torch.float16,
cache_dir=str(MODELS)
)
# 6-3 Pipeline from .safetensors + ControlNet
pipe_ = StableDiffusionControlNetPipeline.from_single_file(
bra_ckpt, controlnet=cn, torch_dtype=torch.float16,
safety_checker=None
)
pipe_.scheduler = DPMSolverMultistepScheduler.from_config(pipe_.scheduler.config)
# 6-4 IP-Adapter
ip_lora = dl(LORA_REPO, IP_LORA)
### 最終修正 ### subfolder引数に空文字列""を渡し、TypeErrorを回避する
pipe_.load_ip_adapter(IP_REPO, "", weight_name=IP_BIN, cache_dir=str(MODELS))
AttnProcsLayers(pipe_.unet.attn_processors).load_lora_weights(
ip_lora, adapter_name="ip_faceid", safe_load=True
)
pipe_.set_adapters(["ip_faceid"], adapter_weights=[0.6])
pipe_.to("cuda"); pipe_ = pipe_
pipe = pipe_
face_analyser = FaceAnalysis(
name="buffalo_l", root=str(MODELS), providers=["CUDAExecutionProvider"]
); face_analyser.prepare(ctx_id=0, det_size=(640,640))
esr = dl(ESRGAN_REPO, ESRGAN_FILE)
upsampler = RealESRGANer(scale=4, model_path=str(esr), half=True,
tile=512, tile_pad=10, pre_pad=0, gpu_id=0)
print("[INIT] ready.")
##############################################################################
# 7. プロンプト
##############################################################################
BASE = "(masterpiece:1.2), best quality, ultra-realistic, RAW photo, 8k, cinematic lighting, textured skin, "
NEG = "verybadimagenegative_v1.3, ng_deepnegative_v1_75t, (worst quality:2), (low quality:2), lowres, blurry, bad anatomy, bad hands, extra digits, watermark, signature"
##############################################################################
# 8. 生成コア
##############################################################################
@spaces.GPU(duration=60)
def generate(face: Image.Image, subj: str, add: str, neg: str,
cfg: float, ipw: float, steps: int, w: int, h: int,
up: bool, upf: int, progress=gr.Progress(track_tqdm=True)):
if pipe is None:
init()
if len(face_analyser.get(np.array(face))) == 0:
raise ValueError("顔が検出できません。他の画像でお試しください。")
pipe.set_adapters(["ip_faceid"], adapter_weights=[ipw])
img = pipe(prompt=BASE+subj+", "+add,
negative_prompt=NEG+", "+neg,
num_inference_steps=steps, guidance_scale=cfg,
image=face, width=w, height=h).images[0]
if up:
upsampler.scale = int(upf)
img, _ = upsampler.enhance(np.array(img)); img = Image.fromarray(img)
return img
##############################################################################
# 9. Gradio UI
##############################################################################
with gr.Blocks(title="BRA v7 × InstantID (ZeroGPU)") as demo:
gr.Markdown("## BRA v7 × InstantID")
with gr.Row():
f = gr.Image(type="pil", label="Face ID"); s = gr.Textbox(label="被写体説明")
ap = gr.Textbox(label="追加プロンプト"); ng = gr.Textbox(label="追加ネガ")
with gr.Row():
cf = gr.Slider(1,20,7.5,0.5,"CFG"); ip = gr.Slider(0.1,1.0,0.6,0.05,"IP-Adapter Weight")
with gr.Row():
st = gr.Slider(10,50,30,1,"Steps"); W = gr.Slider(512,1024,768,64,"W"); H = gr.Slider(512,1024,768,64,"H")
with gr.Row():
up = gr.Checkbox(label="Real-ESRGAN"); upf = gr.Radio([4,8], value=4, label="アップスケール")
btn = gr.Button("Generate"); out = gr.Image(type="pil", label="Result")
btn.click(generate, [f,s,ap,ng,cf,ip,st,W,H,up,upf], out, show_progress=True)
##############################################################################
# 10. FastAPI
##############################################################################
app = FastAPI()
@app.post("/api/generate")
async def api_gen(subj: str=Form(...), cfg: float=Form(7.5), stp: int=Form(30),
ipw: float=Form(0.6), W: int=Form(768), H: int=Form(768),
file: UploadFile=File(...)):
img = Image.open(io.BytesIO(await file.read())).convert("RGB")
res = generate(img, subj, "", "", cfg, ipw, stp, W, H, False, 4)
buf = io.BytesIO(); res.save(buf,"PNG")
return {"image":"data:image/png;base64,"+base64.b64encode(buf.getvalue()).decode()}
##############################################################################
# 11. Launch
##############################################################################
demo.queue(default_concurrency_limit=2).launch(share=False) |