Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,247 Bytes
2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a 6c91c2c 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a bebb126 2da6c3a 6c91c2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# app.py — InstantID × Beautiful Realistic Asians v7 (ZeroGPU-friendly, persistent cache)
"""Persistent-cache backend for InstantID portrait generation.
* 依存モデルは /data が書込可ならそこへ、それ以外は ~/.cache に保存
* wget を使った簡易リトライ DL
"""
# --- ★ Monkey-Patch: torchvision 0.17+ で消えた functional_tensor を補完 ---
import types, sys
from torchvision.transforms import functional as F
mod = types.ModuleType("torchvision.transforms.functional_tensor")
# 必要なのは rgb_to_grayscale だけなのでこれだけエイリアス
mod.rgb_to_grayscale = F.rgb_to_grayscale
sys.modules["torchvision.transforms.functional_tensor"] = mod
# ---------------------------------------------------------------------------
import os, subprocess, cv2, torch, spaces, gradio as gr, numpy as np
from pathlib import Path
from PIL import Image
from diffusers import (
StableDiffusionPipeline, ControlNetModel,
DPMSolverMultistepScheduler, AutoencoderKL,
)
from insightface.app import FaceAnalysis
##############################################################################
# 0. キャッシュ用ディレクトリ
##############################################################################
PERSIST_BASE = Path("/data")
CACHE_ROOT = (
PERSIST_BASE / "instantid_cache"
if PERSIST_BASE.exists() and os.access(PERSIST_BASE, os.W_OK)
else Path.home() / ".cache" / "instantid_cache"
)
print("cache →", CACHE_ROOT)
MODELS_DIR = CACHE_ROOT / "models"
LORA_DIR = MODELS_DIR / "Lora" # FaceID LoRA などを置く
EMB_DIR = CACHE_ROOT / "embeddings"
UPSCALE_DIR = CACHE_ROOT / "realesrgan"
for p in (MODELS_DIR, LORA_DIR, EMB_DIR, UPSCALE_DIR):
p.mkdir(parents=True, exist_ok=True)
def dl(url: str, dst: Path, attempts: int = 2):
"""wget + リトライの簡易ダウンローダ"""
if dst.exists():
print("✓", dst.relative_to(CACHE_ROOT)); return
for i in range(1, attempts + 1):
print(f"⬇ {dst.name} (try {i}/{attempts})")
if subprocess.call(["wget", "-q", "-O", str(dst), url]) == 0:
return
raise RuntimeError(f"download failed → {url}")
##############################################################################
# 1. 必要アセットのダウンロード
##############################################################################
print("— asset check —")
# 1-A. ベース checkpoint
BASE_CKPT = MODELS_DIR / "beautiful_realistic_asians_v7_fp16.safetensors"
dl(
"https://civitai.com/api/download/models/177164?type=Model&format=SafeTensor&size=pruned&fp=fp16",
BASE_CKPT,
)
# 1-B. FaceID LoRA(Δのみ)
LORA_FILE = LORA_DIR / "ip-adapter-faceid-plusv2_sd15_lora.safetensors"
dl(
"https://huggingface.co/h94/IP-Adapter-FaceID/resolve/main/ip-adapter-faceid-plusv2_sd15_lora.safetensors",
LORA_FILE,
)
# 1-C. textual inversion Embeddings
EMB_URLS = {
"ng_deepnegative_v1_75t.pt": [
"https://huggingface.co/datasets/gsdf/EasyNegative/resolve/main/ng_deepnegative_v1_75t.pt",
"https://huggingface.co/mrpxl2/animetarotV51.safetensors/raw/cc3008c0148061896549a995cc297aef0af4ef1b/ng_deepnegative_v1_75t.pt",
],
"badhandv4.pt": [
"https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/badhandv4.pt",
"https://huggingface.co/nolanaatama/embeddings/raw/main/badhandv4.pt",
],
"CyberRealistic_Negative-neg.pt": [
"https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/CyberRealistic_Negative-neg.pt",
"https://huggingface.co/wsj1995/embeddings/raw/main/CyberRealistic_Negative-neg.civitai.info",
],
"UnrealisticDream.pt": [
"https://huggingface.co/datasets/gsdf/ConceptLab/resolve/main/UnrealisticDream.pt",
"https://huggingface.co/imagepipeline/UnrealisticDream/raw/main/f84133b4-aad8-44be-b9ce-7e7e3a8c111f.pt",
],
}
for fname, urls in EMB_URLS.items():
dst = EMB_DIR / fname
for idx, u in enumerate(urls, 1):
try:
dl(u, dst); break
except RuntimeError:
if idx == len(urls): raise
print(" ↳ fallback URL …")
# 1-D. Real-ESRGAN weights (×8)
RRG_WEIGHTS = UPSCALE_DIR / "RealESRGAN_x8plus.pth"
RRG_URLS = [
"https://huggingface.co/NoCrypt/Superscale_RealESRGAN/resolve/main/RealESRGAN_x8plus.pth",
"https://huggingface.co/ai-forever/Real-ESRGAN/raw/main/RealESRGAN_x8.pth",
"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/8x_NMKD-Superscale_100k.pth",
]
for idx, link in enumerate(RRG_URLS, 1):
try:
dl(link, RRG_WEIGHTS); break
except RuntimeError:
if idx == len(RRG_URLS): raise
print(" ↳ fallback URL …")
##############################################################################
# 2. ランタイム初期化
##############################################################################
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
print("device:", device, "| dtype:", dtype)
providers = (
["CUDAExecutionProvider", "CPUExecutionProvider"]
if torch.cuda.is_available()
else ["CPUExecutionProvider"]
)
face_app = FaceAnalysis(name="buffalo_l", root=str(CACHE_ROOT), providers=providers)
face_app.prepare(ctx_id=(0 if torch.cuda.is_available() else -1), det_size=(640, 640))
# ControlNet + SD パイプライン
controlnet = ControlNetModel.from_pretrained(
"InstantX/InstantID", subfolder="ControlNetModel", torch_dtype=dtype
)
pipe = StableDiffusionPipeline.from_single_file(
BASE_CKPT, torch_dtype=dtype, safety_checker=None, use_safetensors=True, clip_skip=2
)
pipe.vae = AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-mse", torch_dtype=dtype
).to(device)
pipe.controlnet = controlnet
pipe.scheduler = DPMSolverMultistepScheduler.from_config(
pipe.scheduler.config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"
)
# --- ここが核心:画像エンコーダ込みで公式レポから直接ロード ------------------
pipe.load_ip_adapter(
"h94/IP-Adapter", # Hugging Face Hub ID
subfolder="models", # ip-adapter-plus-face_sd15.bin が入っているフォルダ
weight_name="ip-adapter-plus-face_sd15.bin",
)
# ---------------------------------------------------------------------------
# FaceID LoRA(差分 LoRA のみ)
pipe.load_lora_weights(str(LORA_DIR), weight_name=LORA_FILE.name)
pipe.set_ip_adapter_scale(0.65)
# textual inversion 読み込み
for emb in EMB_DIR.glob("*.*"):
try:
pipe.load_textual_inversion(emb, token=emb.stem)
print("emb loaded →", emb.stem)
except Exception:
print("emb skip →", emb.name)
pipe.to(device)
print("pipeline ready ✔")
##############################################################################
# 3. アップスケーラ
##############################################################################
try:
from basicsr.archs.rrdb_arch import RRDBNet
try:
from realesrgan import RealESRGAN
except ImportError:
from realesrgan import RealESRGANer as RealESRGAN
rrdb = RRDBNet(3, 3, 64, 23, 32, scale=8)
upsampler = RealESRGAN(device, rrdb, scale=8)
upsampler.load_weights(str(RRG_WEIGHTS))
UPSCALE_OK = True
except Exception as e:
print("Real-ESRGAN disabled →", e)
UPSCALE_OK = False
##############################################################################
# 4. プロンプト & 生成関数
##############################################################################
BASE_PROMPT = (
"masterpiece, ultra-realistic photo of {subject}, "
"cinematic lighting, shallow depth of field, textured skin, "
"Canon EOS R5 85 mm f/1.4, <lora:ip-adapter-faceid-plusv2_sd15_lora:0.65>"
)
NEG_PROMPT = (
"ng_deepnegative_v1_75t, CyberRealistic_Negative-neg, UnrealisticDream, "
"(worst quality:2), (low quality:1.8), lowres, (jpeg artifacts:1.2), "
"painting, sketch, illustration, drawing, cartoon, anime, cgi, render, 3d, "
"monochrome, grayscale, text, logo, watermark, signature, username, "
"(MajicNegative_V2:0.8), bad hands, extra digits, fused fingers, malformed limbs, "
"missing arms, missing legs, (badhandv4:0.7), BadNegAnatomyV1-neg, skin blemishes, acnes, age spot, glans"
)
@spaces.GPU(duration=90)
def generate(
face_np, subject, add_prompt, add_neg, cfg, ip_scale, steps, w, h, upscale, up_factor,
progress=gr.Progress(track_tqdm=True),
):
if face_np is None or face_np.size == 0:
raise gr.Error("顔画像をアップロードしてください。")
prompt = BASE_PROMPT.format(subject=(subject.strip() or "a beautiful 20yo woman"))
if add_prompt:
prompt += ", " + add_prompt
neg = NEG_PROMPT + (", " + add_neg if add_neg else "")
pipe.set_ip_adapter_scale(ip_scale)
img_in = Image.fromarray(face_np)
result = pipe(
prompt=prompt,
negative_prompt=neg,
ip_adapter_image=img_in,
image=img_in,
controlnet_conditioning_scale=0.9,
num_inference_steps=int(steps) + 5,
guidance_scale=cfg,
width=int(w),
height=int(h),
).images[0]
if upscale:
if UPSCALE_OK:
up, _ = upsampler.enhance(
cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR), outscale=up_factor
)
result = Image.fromarray(cv2.cvtColor(up, cv2.COLOR_BGR2RGB))
else:
result = result.resize(
(int(result.width * up_factor), int(result.height * up_factor)),
Image.LANCZOS,
)
return result
##############################################################################
# 5. Gradio UI
##############################################################################
with gr.Blocks() as demo:
gr.Markdown("# InstantID – Beautiful Realistic Asians v7")
with gr.Row():
with gr.Column():
face_in = gr.Image(label="顔写真", type="numpy")
subj_in = gr.Textbox(label="被写体説明", placeholder="e.g. woman in black suit, smiling")
add_in = gr.Textbox(label="追加プロンプト")
addneg_in = gr.Textbox(label="追加ネガティブ")
ip_sld = gr.Slider(0, 1.5, 0.65, step=0.05, label="IP-Adapter scale")
cfg_sld = gr.Slider(1, 15, 6, step=0.5, label="CFG")
step_sld = gr.Slider(10, 50, 20, step=1, label="Steps")
w_sld = gr.Slider(512, 1024, 512, step=64, label="幅")
h_sld = gr.Slider(512, 1024, 768, step=64, label="高さ")
up_ck = gr.Checkbox(label="アップスケール", value=True)
up_fac = gr.Slider(1, 8, 2, step=1, label="倍率")
btn = gr.Button("生成", variant="primary")
with gr.Column():
out_img = gr.Image(label="結果")
btn.click(
generate,
[face_in, subj_in, add_in, addneg_in, cfg_sld, ip_sld, step_sld, w_sld, h_sld, up_ck, up_fac],
out_img,
api_name="predict",
)
print("launching …")
demo.queue().launch(show_error=True)
|