iAIChat commited on
Commit
204276a
·
1 Parent(s): 0013b84

Update gradio_exit.py

Browse files
Files changed (1) hide show
  1. gradio_exit.py +3 -41
gradio_exit.py CHANGED
@@ -1,26 +1,3 @@
1
- #https://stackoverflow.com/questions/75286784/how-do-i-gracefully-close-terminate-gradio-from-within-gradio-blocks
2
- #https://levelup.gitconnected.com/bringing-your-ai-models-to-life-an-introduction-to-gradio-ae051ca83edf
3
- #Bringing Your AI Models to Life: An Introduction to Gradio - How to demo your ML model quickly without any front-end hassle.
4
- #pipreqs . --encoding=utf-8
5
-
6
- #https://huggingface.co/blog/inference-endpoints
7
- #Getting Started with Hugging Face Inference Endpoints
8
-
9
- #https://www.gradio.app/guides/using-hugging-face-integrations
10
- Using Hugging Face Integrations
11
-
12
- #在app.py的根目录下cmd命令行窗口中运行:gradio deploy,将会出现如下提示:
13
- #To login, `huggingface_hub` requires a token generated from https://huggingface.co/settings/tokens .
14
- #Token can be pasted using 'Right-Click'.
15
- #Token:先将HF_API_TOKEN拷贝到剪贴板之后,邮件单击即可
16
- #Add token as git credential? (Y/n) n
17
- #Token is valid (permission: write).
18
- #Your token has been saved to C:\Users\lenovo\.cache\huggingface\token
19
- #Login successful
20
- #Creating new Spaces Repo in 'D:\ChatGPTApps\Gradio_HF_Apps'. Collecting metadata, press Enter to accept default value.
21
- #Enter Spaces app title [Gradio_HF_Apps]:
22
-
23
-
24
  import os
25
  import io
26
  import requests
@@ -33,22 +10,12 @@ from dotenv import load_dotenv, find_dotenv
33
  _ = load_dotenv(find_dotenv()) # read local .env file
34
  hf_api_key ="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"
35
 
36
- #model_id = "sentence-transformers/all-MiniLM-L6-v2"
37
  model_id = "shleifer/distilbart-cnn-12-6"
38
- #hf_token = "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"
39
 
40
- #ENDPOINT_URL='https://api-inference.huggingface.co/models/DunnBC22/flan-t5-base-text_summarization_data'
41
  api_url ='https://api-inference.huggingface.co/models/DunnBC22/flan-t5-base-text_summarization_data'
42
- #api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_id}"
43
- #pipeline的api-inference/Endpoint是对应于transformers(用于生成向量Embeddings)的!
44
- #headers = {"Authorization": f"Bearer {hf_token}"}
45
- headers = {"Authorization": f"Bearer {hf_api_key}"}
46
 
47
- #def query(texts):
48
- # response = requests.post(api_url, headers=headers, json={"inputs": texts, "options":{"wait_for_model":True}})
49
- # return response.json()
50
 
51
- #可以不使用ENDPOINT_URL,而是使用api_url(或者两个是一回事?):https://huggingface.co/blog/getting-started-with-embeddings
52
  def get_completion(inputs, parameters=None, ENDPOINT_URL=api_url):
53
  headers = {
54
  "Authorization": f"Bearer {hf_api_key}",
@@ -72,7 +39,7 @@ text = (
72
  '''He was undefeated in battle and is widely considered to be one of history's greatest and most successful military commanders.[3][4]'''
73
  )
74
 
75
- get_completion(text) #api_url中的model_id = "sentence-transformers/all-MiniLM-L6-v2"时,返回的结果是浮点数(即向量Embeddings)
76
 
77
  import gradio as gr
78
 
@@ -89,9 +56,4 @@ demo = gr.Interface(fn=summarize,
89
  description="Summarize any text using the `shleifer/distilbart-cnn-12-6` model under the hood!"
90
  )
91
 
92
- #demo.launch(share=True, server_port=int(os.environ['PORT2']))
93
- #demo.launch(share=True)
94
- demo.launch()
95
-
96
-
97
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
  import io
3
  import requests
 
10
  _ = load_dotenv(find_dotenv()) # read local .env file
11
  hf_api_key ="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"
12
 
 
13
  model_id = "shleifer/distilbart-cnn-12-6"
 
14
 
 
15
  api_url ='https://api-inference.huggingface.co/models/DunnBC22/flan-t5-base-text_summarization_data'
 
 
 
 
16
 
17
+ headers = {"Authorization": f"Bearer {hf_api_key}"}
 
 
18
 
 
19
  def get_completion(inputs, parameters=None, ENDPOINT_URL=api_url):
20
  headers = {
21
  "Authorization": f"Bearer {hf_api_key}",
 
39
  '''He was undefeated in battle and is widely considered to be one of history's greatest and most successful military commanders.[3][4]'''
40
  )
41
 
42
+ get_completion(text)
43
 
44
  import gradio as gr
45
 
 
56
  description="Summarize any text using the `shleifer/distilbart-cnn-12-6` model under the hood!"
57
  )
58
 
59
+ demo.launch()