Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -76,58 +76,38 @@ headers = {"Authorization": f"Bearer {hf_token}"}
|
|
76 |
|
77 |
hf_embeddings = HFEmbeddings(api_url, headers)
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
#def generate_random_string(length):
|
85 |
-
# letters = string.ascii_letters
|
86 |
-
# random_string = ''.join(random.choice(letters) for _ in range(length))
|
87 |
-
# return random_string
|
88 |
-
#random_string = generate_random_string(12)
|
89 |
|
90 |
def generate_random_string(length):
|
91 |
letters = string.ascii_lowercase
|
92 |
return ''.join(random.choice(letters) for i in range(length))
|
93 |
random_string = generate_random_string(10)
|
94 |
|
95 |
-
PINECONE_API_KEY = "5f07b52e-2a16-42a3-89c4-8899c584109e"
|
96 |
-
PINECONE_ENVIRONMENT = "asia-southeast1-gcp-free"
|
97 |
-
PINECONE_INDEX_NAME = "myindex-allminilm-l6-v2-384"
|
98 |
-
print(PINECONE_INDEX_NAME)
|
99 |
-
|
100 |
#def exit_handler():
|
101 |
# pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT)
|
102 |
# index_namespace_to_delete = pinecone.Index(index_name=index_name)
|
103 |
# index_namespace_to_delete.delete(delete_all=True, namespace=namespace)
|
104 |
-
|
105 |
#atexit.register(exit_handler)
|
106 |
|
107 |
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT)
|
108 |
index_name = PINECONE_INDEX_NAME
|
|
|
109 |
print(index_name)
|
110 |
-
#namespace = random_string
|
111 |
namespace = random_string
|
112 |
-
#index_name = pinecone.Index(index_name)
|
113 |
print(namespace)
|
114 |
|
115 |
vector_db = Pinecone.from_texts(db_texts, hf_embeddings, index_name=index_name, namespace=namespace)
|
116 |
-
|
117 |
-
#Considering Python apps automatically execute codes, a Vector-DB should have been created under namespace = "HF-GRADIO-0909"
|
118 |
-
#when this app begins to run, however, the real world test results show not that way (i.e. namespace not created).
|
119 |
-
#then input something in the input text box and click submit, to see how the app will react.
|
120 |
-
|
121 |
#vector_db = Pinecone.from_texts([t.page_content for t in db_texts], hf_embeddings, index_name=index_name, namespace=namespace)
|
122 |
#docsearch = Pinecone.from_texts([t.page_content for t in texts], embeddings, index_name=index_name, namespace=namespace)
|
123 |
print("***********************************")
|
124 |
print("Pinecone Vector/Embedding DB Ready.")
|
125 |
|
126 |
-
#查看Pinecone账户下的Index(名称)
|
127 |
index_name_extracted=pinecone.list_indexes()
|
128 |
print(index_name_extracted)
|
129 |
|
130 |
-
#查看Pinecone的Index状态
|
131 |
index_current = pinecone.Index(index_name=index_name)
|
132 |
index_status=index_current.describe_index_stats()
|
133 |
print(index_status)
|
|
|
76 |
|
77 |
hf_embeddings = HFEmbeddings(api_url, headers)
|
78 |
|
79 |
+
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
|
80 |
+
PINECONE_ENVIRONMENT = os.getenv('PINECONE_ENVIRONMENT')
|
81 |
+
PINECONE_INDEX_NAME = os.getenv('PINECONE_INDEX_NAME')
|
82 |
+
print(PINECONE_INDEX_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
def generate_random_string(length):
|
85 |
letters = string.ascii_lowercase
|
86 |
return ''.join(random.choice(letters) for i in range(length))
|
87 |
random_string = generate_random_string(10)
|
88 |
|
|
|
|
|
|
|
|
|
|
|
89 |
#def exit_handler():
|
90 |
# pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT)
|
91 |
# index_namespace_to_delete = pinecone.Index(index_name=index_name)
|
92 |
# index_namespace_to_delete.delete(delete_all=True, namespace=namespace)
|
|
|
93 |
#atexit.register(exit_handler)
|
94 |
|
95 |
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_ENVIRONMENT)
|
96 |
index_name = PINECONE_INDEX_NAME
|
97 |
+
#index_name = pinecone.Index(index_name)
|
98 |
print(index_name)
|
|
|
99 |
namespace = random_string
|
|
|
100 |
print(namespace)
|
101 |
|
102 |
vector_db = Pinecone.from_texts(db_texts, hf_embeddings, index_name=index_name, namespace=namespace)
|
|
|
|
|
|
|
|
|
|
|
103 |
#vector_db = Pinecone.from_texts([t.page_content for t in db_texts], hf_embeddings, index_name=index_name, namespace=namespace)
|
104 |
#docsearch = Pinecone.from_texts([t.page_content for t in texts], embeddings, index_name=index_name, namespace=namespace)
|
105 |
print("***********************************")
|
106 |
print("Pinecone Vector/Embedding DB Ready.")
|
107 |
|
|
|
108 |
index_name_extracted=pinecone.list_indexes()
|
109 |
print(index_name_extracted)
|
110 |
|
|
|
111 |
index_current = pinecone.Index(index_name=index_name)
|
112 |
index_status=index_current.describe_index_stats()
|
113 |
print(index_status)
|