iDrops commited on
Commit
072143e
·
verified ·
1 Parent(s): dcec4dc

Upload utils.py

Browse files
Files changed (1) hide show
  1. utils.py +168 -0
utils.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import mediapipe as mp
3
+ import numpy as np
4
+
5
+ correct = cv2.imread('right.png')
6
+ correct = cv2.cvtColor(correct, cv2.COLOR_BGR2RGB)
7
+ incorrect = cv2.imread('wrong.png')
8
+ incorrect = cv2.cvtColor(incorrect, cv2.COLOR_BGR2RGB)
9
+
10
+ def draw_rounded_rect(img, rect_start, rect_end, corner_width, box_color):
11
+
12
+ x1, y1 = rect_start
13
+ x2, y2 = rect_end
14
+ w = corner_width
15
+
16
+ # draw filled rectangles
17
+ cv2.rectangle(img, (x1 + w, y1), (x2 - w, y1 + w), box_color, -1)
18
+ cv2.rectangle(img, (x1 + w, y2 - w), (x2 - w, y2), box_color, -1)
19
+ cv2.rectangle(img, (x1, y1 + w), (x1 + w, y2 - w), box_color, -1)
20
+ cv2.rectangle(img, (x2 - w, y1 + w), (x2, y2 - w), box_color, -1)
21
+ cv2.rectangle(img, (x1 + w, y1 + w), (x2 - w, y2 - w), box_color, -1)
22
+
23
+
24
+ # draw filled ellipses
25
+ cv2.ellipse(img, (x1 + w, y1 + w), (w, w),
26
+ angle = 0, startAngle = -90, endAngle = -180, color = box_color, thickness = -1)
27
+
28
+ cv2.ellipse(img, (x2 - w, y1 + w), (w, w),
29
+ angle = 0, startAngle = 0, endAngle = -90, color = box_color, thickness = -1)
30
+
31
+ cv2.ellipse(img, (x1 + w, y2 - w), (w, w),
32
+ angle = 0, startAngle = 90, endAngle = 180, color = box_color, thickness = -1)
33
+
34
+ cv2.ellipse(img, (x2 - w, y2 - w), (w, w),
35
+ angle = 0, startAngle = 0, endAngle = 90, color = box_color, thickness = -1)
36
+
37
+ return img
38
+
39
+
40
+
41
+
42
+ def draw_dotted_line(frame, lm_coord, start, end, line_color):
43
+ pix_step = 0
44
+
45
+ for i in range(start, end+1, 8):
46
+ cv2.circle(frame, (lm_coord[0], i+pix_step), 2, line_color, -1, lineType=cv2.LINE_AA)
47
+
48
+ return frame
49
+
50
+ def draw_text(
51
+ img,
52
+ msg,
53
+ width = 7,
54
+ font=cv2.FONT_HERSHEY_SIMPLEX,
55
+ pos=(0, 0),
56
+ font_scale=1,
57
+ font_thickness=2,
58
+ text_color=(0, 255, 0),
59
+ text_color_bg=(0, 0, 0),
60
+ box_offset=(20, 10),
61
+ overlay_image = False,
62
+ overlay_type = None
63
+ ):
64
+
65
+ offset = box_offset
66
+ x, y = pos
67
+ text_size, _ = cv2.getTextSize(msg, font, font_scale, font_thickness)
68
+ text_w, text_h = text_size
69
+
70
+ rec_start = tuple(p - o for p, o in zip(pos, offset))
71
+ rec_end = tuple(m + n - o for m, n, o in zip((x + text_w, y + text_h), offset, (25, 0)))
72
+
73
+ resize_height = 0
74
+
75
+ if overlay_image:
76
+ resize_height = rec_end[1] - rec_start[1]
77
+ # print("Height: ", resize_height)
78
+ # print("Width: ", rec_end[0] - rec_start[0])
79
+ img = draw_rounded_rect(img, rec_start, (rec_end[0]+resize_height, rec_end[1]), width, text_color_bg)
80
+ if overlay_type == "correct":
81
+ overlay_res = cv2.resize(correct, (resize_height, resize_height), interpolation = cv2.INTER_AREA)
82
+ elif overlay_type == "incorrect":
83
+ overlay_res = cv2.resize(incorrect, (resize_height, resize_height), interpolation = cv2.INTER_AREA)
84
+
85
+ img[rec_start[1]:rec_start[1]+resize_height, rec_start[0]+width:rec_start[0]+width+resize_height] = overlay_res
86
+
87
+ else:
88
+ img = draw_rounded_rect(img, rec_start, rec_end, width, text_color_bg)
89
+
90
+
91
+ cv2.putText(
92
+ img,
93
+ msg,
94
+ (int(rec_start[0]+resize_height + 8), int(y + text_h + font_scale - 1)),
95
+ font,
96
+ font_scale,
97
+ text_color,
98
+ font_thickness,
99
+ cv2.LINE_AA,
100
+ )
101
+
102
+
103
+
104
+ return text_size
105
+
106
+
107
+
108
+ def find_angle(p1, p2, ref_pt = np.array([0,0])):
109
+ p1_ref = p1 - ref_pt
110
+ p2_ref = p2 - ref_pt
111
+
112
+ cos_theta = (np.dot(p1_ref,p2_ref)) / (1.0 * np.linalg.norm(p1_ref) * np.linalg.norm(p2_ref))
113
+ theta = np.arccos(np.clip(cos_theta, -1.0, 1.0))
114
+
115
+ degree = int(180 / np.pi) * theta
116
+
117
+ return int(degree)
118
+
119
+
120
+
121
+
122
+
123
+ def get_landmark_array(pose_landmark, key, frame_width, frame_height):
124
+
125
+ denorm_x = int(pose_landmark[key].x * frame_width)
126
+ denorm_y = int(pose_landmark[key].y * frame_height)
127
+
128
+ return np.array([denorm_x, denorm_y])
129
+
130
+
131
+
132
+
133
+ def get_landmark_features(kp_results, dict_features, feature, frame_width, frame_height):
134
+
135
+ if feature == 'nose':
136
+ return get_landmark_array(kp_results, dict_features[feature], frame_width, frame_height)
137
+
138
+ elif feature == 'left' or 'right':
139
+ shldr_coord = get_landmark_array(kp_results, dict_features[feature]['shoulder'], frame_width, frame_height)
140
+ elbow_coord = get_landmark_array(kp_results, dict_features[feature]['elbow'], frame_width, frame_height)
141
+ wrist_coord = get_landmark_array(kp_results, dict_features[feature]['wrist'], frame_width, frame_height)
142
+ hip_coord = get_landmark_array(kp_results, dict_features[feature]['hip'], frame_width, frame_height)
143
+ knee_coord = get_landmark_array(kp_results, dict_features[feature]['knee'], frame_width, frame_height)
144
+ ankle_coord = get_landmark_array(kp_results, dict_features[feature]['ankle'], frame_width, frame_height)
145
+ foot_coord = get_landmark_array(kp_results, dict_features[feature]['foot'], frame_width, frame_height)
146
+
147
+ return shldr_coord, elbow_coord, wrist_coord, hip_coord, knee_coord, ankle_coord, foot_coord
148
+
149
+ else:
150
+ raise ValueError("feature needs to be either 'nose', 'left' or 'right")
151
+
152
+
153
+ def get_mediapipe_pose(
154
+ static_image_mode = False,
155
+ model_complexity = 1,
156
+ smooth_landmarks = True,
157
+ min_detection_confidence = 0.5,
158
+ min_tracking_confidence = 0.5
159
+
160
+ ):
161
+ pose = mp.solutions.pose.Pose(
162
+ static_image_mode = static_image_mode,
163
+ model_complexity = model_complexity,
164
+ smooth_landmarks = smooth_landmarks,
165
+ min_detection_confidence = min_detection_confidence,
166
+ min_tracking_confidence = min_tracking_confidence
167
+ )
168
+ return pose