iDrops commited on
Commit
5577555
·
verified ·
1 Parent(s): 36a36a7

Update utils.py

Browse files
Files changed (1) hide show
  1. utils.py +112 -20
utils.py CHANGED
@@ -2,6 +2,7 @@ import cv2
2
  import mediapipe as mp
3
  import numpy as np
4
 
 
5
  correct = cv2.imread('right.png')
6
  correct = cv2.cvtColor(correct, cv2.COLOR_BGR2RGB)
7
  incorrect = cv2.imread('wrong.png')
@@ -9,19 +10,30 @@ incorrect = cv2.cvtColor(incorrect, cv2.COLOR_BGR2RGB)
9
 
10
  def draw_rounded_rect(img, rect_start, rect_end, corner_width, box_color):
11
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  x1, y1 = rect_start
13
  x2, y2 = rect_end
14
  w = corner_width
15
 
16
- # draw filled rectangles
17
  cv2.rectangle(img, (x1 + w, y1), (x2 - w, y1 + w), box_color, -1)
18
  cv2.rectangle(img, (x1 + w, y2 - w), (x2 - w, y2), box_color, -1)
19
  cv2.rectangle(img, (x1, y1 + w), (x1 + w, y2 - w), box_color, -1)
20
  cv2.rectangle(img, (x2 - w, y1 + w), (x2, y2 - w), box_color, -1)
21
  cv2.rectangle(img, (x1 + w, y1 + w), (x2 - w, y2 - w), box_color, -1)
22
 
23
-
24
- # draw filled ellipses
25
  cv2.ellipse(img, (x1 + w, y1 + w), (w, w),
26
  angle = 0, startAngle = -90, endAngle = -180, color = box_color, thickness = -1)
27
 
@@ -36,12 +48,21 @@ def draw_rounded_rect(img, rect_start, rect_end, corner_width, box_color):
36
 
37
  return img
38
 
39
-
40
-
41
-
42
  def draw_dotted_line(frame, lm_coord, start, end, line_color):
 
 
 
 
 
 
 
 
 
 
 
43
  pix_step = 0
44
 
 
45
  for i in range(start, end+1, 8):
46
  cv2.circle(frame, (lm_coord[0], i+pix_step), 2, line_color, -1, lineType=cv2.LINE_AA)
47
 
@@ -61,33 +82,62 @@ def draw_text(
61
  overlay_image = False,
62
  overlay_type = None
63
  ):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
  offset = box_offset
66
  x, y = pos
 
 
67
  text_size, _ = cv2.getTextSize(msg, font, font_scale, font_thickness)
68
  text_w, text_h = text_size
69
 
 
70
  rec_start = tuple(p - o for p, o in zip(pos, offset))
71
  rec_end = tuple(m + n - o for m, n, o in zip((x + text_w, y + text_h), offset, (25, 0)))
72
 
73
  resize_height = 0
74
 
 
 
75
  if overlay_image:
76
  resize_height = rec_end[1] - rec_start[1]
77
- # print("Height: ", resize_height)
78
- # print("Width: ", rec_end[0] - rec_start[0])
 
79
  img = draw_rounded_rect(img, rec_start, (rec_end[0]+resize_height, rec_end[1]), width, text_color_bg)
 
 
80
  if overlay_type == "correct":
81
  overlay_res = cv2.resize(correct, (resize_height, resize_height), interpolation = cv2.INTER_AREA)
82
  elif overlay_type == "incorrect":
83
  overlay_res = cv2.resize(incorrect, (resize_height, resize_height), interpolation = cv2.INTER_AREA)
84
 
 
85
  img[rec_start[1]:rec_start[1]+resize_height, rec_start[0]+width:rec_start[0]+width+resize_height] = overlay_res
86
 
87
  else:
88
  img = draw_rounded_rect(img, rec_start, rec_end, width, text_color_bg)
89
 
90
 
 
91
  cv2.putText(
92
  img,
93
  msg,
@@ -99,39 +149,69 @@ def draw_text(
99
  cv2.LINE_AA,
100
  )
101
 
102
-
103
-
104
  return text_size
105
 
106
-
107
-
108
  def find_angle(p1, p2, ref_pt = np.array([0,0])):
 
 
 
 
 
 
 
 
 
 
 
 
109
  p1_ref = p1 - ref_pt
110
  p2_ref = p2 - ref_pt
111
 
 
112
  cos_theta = (np.dot(p1_ref,p2_ref)) / (1.0 * np.linalg.norm(p1_ref) * np.linalg.norm(p2_ref))
 
 
113
  theta = np.arccos(np.clip(cos_theta, -1.0, 1.0))
114
-
115
- degree = int(180 / np.pi) * theta
116
 
 
 
117
  return int(degree)
118
 
 
 
 
119
 
 
 
 
 
 
120
 
121
-
122
-
123
- def get_landmark_array(pose_landmark, key, frame_width, frame_height):
124
 
125
  denorm_x = int(pose_landmark[key].x * frame_width)
126
  denorm_y = int(pose_landmark[key].y * frame_height)
127
 
128
  return np.array([denorm_x, denorm_y])
129
 
 
 
 
130
 
 
 
 
 
 
 
131
 
 
 
 
132
 
133
- def get_landmark_features(kp_results, dict_features, feature, frame_width, frame_height):
134
-
135
  if feature == 'nose':
136
  return get_landmark_array(kp_results, dict_features[feature], frame_width, frame_height)
137
 
@@ -149,8 +229,20 @@ def get_landmark_features(kp_results, dict_features, feature, frame_width, frame
149
  else:
150
  raise ValueError("feature needs to be either 'nose', 'left' or 'right")
151
 
152
-
153
  def get_mediapipe_pose(
 
 
 
 
 
 
 
 
 
 
 
 
 
154
  static_image_mode = False,
155
  model_complexity = 1,
156
  smooth_landmarks = True,
 
2
  import mediapipe as mp
3
  import numpy as np
4
 
5
+ # Load the correct and incorrect posture images as BGR colors
6
  correct = cv2.imread('right.png')
7
  correct = cv2.cvtColor(correct, cv2.COLOR_BGR2RGB)
8
  incorrect = cv2.imread('wrong.png')
 
10
 
11
  def draw_rounded_rect(img, rect_start, rect_end, corner_width, box_color):
12
 
13
+ """
14
+ This function draws a rectangle with rounded corners on an image.
15
+
16
+ Args:
17
+ img: The image to draw on.
18
+ rect_start: The top-left corner of the rectangle as a tuple (x1, y1).
19
+ rect_end: The bottom-right corner of the rectangle as a tuple (x2, y2).
20
+ corner_width: The width of the rounded corners.
21
+ box_color: The color of the rectangle in BGR format.
22
+ """
23
+
24
+
25
  x1, y1 = rect_start
26
  x2, y2 = rect_end
27
  w = corner_width
28
 
29
+ # Draw filled rectangles for each side of the box
30
  cv2.rectangle(img, (x1 + w, y1), (x2 - w, y1 + w), box_color, -1)
31
  cv2.rectangle(img, (x1 + w, y2 - w), (x2 - w, y2), box_color, -1)
32
  cv2.rectangle(img, (x1, y1 + w), (x1 + w, y2 - w), box_color, -1)
33
  cv2.rectangle(img, (x2 - w, y1 + w), (x2, y2 - w), box_color, -1)
34
  cv2.rectangle(img, (x1 + w, y1 + w), (x2 - w, y2 - w), box_color, -1)
35
 
36
+ # Draw filled ellipses for the corners
 
37
  cv2.ellipse(img, (x1 + w, y1 + w), (w, w),
38
  angle = 0, startAngle = -90, endAngle = -180, color = box_color, thickness = -1)
39
 
 
48
 
49
  return img
50
 
 
 
 
51
  def draw_dotted_line(frame, lm_coord, start, end, line_color):
52
+ """
53
+ This function draws a dotted line on a frame based on landmark coordinates.
54
+
55
+ Args:
56
+ frame: The image to draw on.
57
+ lm_coord: The landmark coordinates as a NumPy array.
58
+ start: The index of the starting landmark in the lm_coord array.
59
+ end: The index of the ending landmark in the lm_coord array.
60
+ line_color: The color of the line in BGR format.
61
+ """
62
+
63
  pix_step = 0
64
 
65
+ # Draw circles at every 8th element between the start and end landmarks
66
  for i in range(start, end+1, 8):
67
  cv2.circle(frame, (lm_coord[0], i+pix_step), 2, line_color, -1, lineType=cv2.LINE_AA)
68
 
 
82
  overlay_image = False,
83
  overlay_type = None
84
  ):
85
+ """
86
+ This function draws text with a customizable background box on an image.
87
+
88
+ Args:
89
+ img: The image to draw on.
90
+ msg: The message to display as a string.
91
+ width: The thickness of the background box border (default: 7).
92
+ font: The font style for the text (default: cv2.FONT_HERSHEY_SIMPLEX).
93
+ pos: The top-left corner coordinates of the text box (default: (0, 0)).
94
+ font_scale: The scaling factor for the font size (default: 1).
95
+ font_thickness: The thickness of the text (default: 2).
96
+ text_color: The color of the text in BGR format (default: green - (0, 255, 0)).
97
+ text_color_bg: The color of the background box in BGR format (default: black - (0, 0, 0)).
98
+ box_offset: The offset for the background box relative to the text (default: (20, 10)).
99
+ overlay_image: Flag to display an overlay image inside the box (default: False).
100
+ overlay_type: Type of overlay image ("correct" or "incorrect") - used when overlay_image is True.
101
+ Returns:
102
+ The size of the drawn text (width, height) as a NumPy array.
103
+ """
104
 
105
  offset = box_offset
106
  x, y = pos
107
+
108
+ # Get the size of the text with the specified font and scale
109
  text_size, _ = cv2.getTextSize(msg, font, font_scale, font_thickness)
110
  text_w, text_h = text_size
111
 
112
+ # Calculate the top-left and bottom-right corners of the text box with padding
113
  rec_start = tuple(p - o for p, o in zip(pos, offset))
114
  rec_end = tuple(m + n - o for m, n, o in zip((x + text_w, y + text_h), offset, (25, 0)))
115
 
116
  resize_height = 0
117
 
118
+
119
+ # Handle overlay image logic
120
  if overlay_image:
121
  resize_height = rec_end[1] - rec_start[1]
122
+
123
+
124
+ # Draw a rounded rectangle box with the background color
125
  img = draw_rounded_rect(img, rec_start, (rec_end[0]+resize_height, rec_end[1]), width, text_color_bg)
126
+
127
+ # Resize the overlay image based on the box height
128
  if overlay_type == "correct":
129
  overlay_res = cv2.resize(correct, (resize_height, resize_height), interpolation = cv2.INTER_AREA)
130
  elif overlay_type == "incorrect":
131
  overlay_res = cv2.resize(incorrect, (resize_height, resize_height), interpolation = cv2.INTER_AREA)
132
 
133
+ # Overlay the resized image onto the background box
134
  img[rec_start[1]:rec_start[1]+resize_height, rec_start[0]+width:rec_start[0]+width+resize_height] = overlay_res
135
 
136
  else:
137
  img = draw_rounded_rect(img, rec_start, rec_end, width, text_color_bg)
138
 
139
 
140
+ # Draw the text onto the image with specified parameters
141
  cv2.putText(
142
  img,
143
  msg,
 
149
  cv2.LINE_AA,
150
  )
151
 
 
 
152
  return text_size
153
 
 
 
154
  def find_angle(p1, p2, ref_pt = np.array([0,0])):
155
+ """
156
+ This function calculates the angle between two points relative to a reference point.
157
+
158
+ Args:
159
+ p1: The first point coordinates as a NumPy array (x, y).
160
+ p2: The second point coordinates as a NumPy array (x, y).
161
+ ref_pt: The reference point coordinates as a NumPy array (default: [0, 0]).
162
+
163
+ Returns:
164
+ The angle between the two points in degrees (int).
165
+ """
166
+ # Subtract the reference point from both points for normalization
167
  p1_ref = p1 - ref_pt
168
  p2_ref = p2 - ref_pt
169
 
170
+ # Calculate the cosine of the angle using the dot product
171
  cos_theta = (np.dot(p1_ref,p2_ref)) / (1.0 * np.linalg.norm(p1_ref) * np.linalg.norm(p2_ref))
172
+
173
+ # Clip the cosine value to avoid potential errors
174
  theta = np.arccos(np.clip(cos_theta, -1.0, 1.0))
 
 
175
 
176
+ # Convert the angle from radians to degrees and cast to integer
177
+ degree = int(180 / np.pi) * theta
178
  return int(degree)
179
 
180
+ def get_landmark_array(pose_landmark, key, frame_width, frame_height):
181
+ """
182
+ This function extracts the normalized image coordinates for a landmark.
183
 
184
+ Args:
185
+ pose_landmark: A MediaPipe pose landmark object.
186
+ key: The key name of the landmark to extract (e.g., 'nose', 'shoulder.x').
187
+ frame_width: The width of the image frame.
188
+ frame_height: The height of the image frame.
189
 
190
+ Returns:
191
+ A NumPy array containing the normalized x and y coordinates of the landmark.
192
+ """
193
 
194
  denorm_x = int(pose_landmark[key].x * frame_width)
195
  denorm_y = int(pose_landmark[key].y * frame_height)
196
 
197
  return np.array([denorm_x, denorm_y])
198
 
199
+ def get_landmark_features(kp_results, dict_features, feature, frame_width, frame_height):
200
+ """
201
+ This function extracts landmark coordinates for various body parts based on a feature name.
202
 
203
+ Args:
204
+ kp_results: The MediaPipe pose landmark results object.
205
+ dict_features: A dictionary containing landmark key names for different body parts.
206
+ feature: The name of the body part feature to extract (e.g., 'nose', 'left', 'right').
207
+ frame_width: The width of the image frame.
208
+ frame_height: The height of the image frame.
209
 
210
+ Returns:
211
+ A list containing the landmark coordinates (as NumPy arrays) or raises an error if the feature is invalid.
212
+ """
213
 
214
+
 
215
  if feature == 'nose':
216
  return get_landmark_array(kp_results, dict_features[feature], frame_width, frame_height)
217
 
 
229
  else:
230
  raise ValueError("feature needs to be either 'nose', 'left' or 'right")
231
 
 
232
  def get_mediapipe_pose(
233
+ ''''
234
+ This function creates a MediaPipe Pose object for human pose estimation.
235
+
236
+ Args:
237
+ static_image_mode: Flag for processing a single static image (default: False).
238
+ model_complexity: Level of complexity for the pose model (default: 1).
239
+ smooth_landmarks: Enable smoothing of detected landmarks (default: True).
240
+ min_detection_confidence: Minimum confidence threshold for person detection (default: 0.5).
241
+ min_tracking_confidence: Minimum confidence threshold for pose tracking (default: 0.5).
242
+
243
+ Returns:
244
+ A MediaPipe Pose object.
245
+ ''''
246
  static_image_mode = False,
247
  model_complexity = 1,
248
  smooth_landmarks = True,