Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- Cardio_Vascular_Disease_by_Gut_Microbiota.csv +0 -0
- README.md +5 -6
- app.py +230 -0
- gitattributes +35 -0
- requirements.txt +4 -0
Cardio_Vascular_Disease_by_Gut_Microbiota.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
README.md
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Cardio Vascular Disease Prediction
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from sklearn.model_selection import train_test_split
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.metrics import accuracy_score
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
|
8 |
+
# Check for missing values
|
9 |
+
#Loading Data
|
10 |
+
data = pd.read_csv('Cardio_Vascular_Disease_by_Gut_Microbiota.csv')
|
11 |
+
print(data.head())
|
12 |
+
|
13 |
+
from sklearn.ensemble import RandomForestClassifier
|
14 |
+
|
15 |
+
# Define features and target
|
16 |
+
X = data.drop(columns=['patient_id', 'CVD_Status'])
|
17 |
+
y = data['CVD_Status']
|
18 |
+
|
19 |
+
# Train a RandomForest model
|
20 |
+
rf = RandomForestClassifier(random_state=42)
|
21 |
+
rf.fit(X, y)
|
22 |
+
|
23 |
+
# Feature importances
|
24 |
+
importances = rf.feature_importances_
|
25 |
+
|
26 |
+
# Plot feature importances
|
27 |
+
feature_importance_df = pd.DataFrame({'Feature': X.columns, 'Importance': importances})
|
28 |
+
feature_importance_df = feature_importance_df.sort_values('Importance', ascending=False)
|
29 |
+
|
30 |
+
plt.figure(figsize=(10,6))
|
31 |
+
sns.barplot(x='Importance', y='Feature', data=feature_importance_df)
|
32 |
+
plt.title('Feature Importance from Random Forest')
|
33 |
+
plt.show()
|
34 |
+
|
35 |
+
from sklearn.ensemble import GradientBoostingClassifier
|
36 |
+
from xgboost import XGBClassifier
|
37 |
+
from lightgbm import LGBMClassifier
|
38 |
+
from sklearn.metrics import accuracy_score, confusion_matrix
|
39 |
+
from sklearn.metrics import accuracy_score, confusion_matrix, r2_score, mean_squared_error, mean_absolute_error
|
40 |
+
from math import sqrt
|
41 |
+
|
42 |
+
# Initialize the models
|
43 |
+
gradient_boosting = GradientBoostingClassifier(random_state=42)
|
44 |
+
|
45 |
+
# Split into training and testing sets (80% train, 20% test)
|
46 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
47 |
+
|
48 |
+
# Train and evaluate Gradient Boosting
|
49 |
+
gradient_boosting.fit(X_train, y_train)
|
50 |
+
y_pred_gb = gradient_boosting.predict(X_test)
|
51 |
+
accuracy_gb = accuracy_score(y_test, y_pred_gb)
|
52 |
+
conf_matrix_gb = confusion_matrix(y_test, y_pred_gb)
|
53 |
+
|
54 |
+
# Print results
|
55 |
+
print(f"Gradient Boosting Accuracy: {accuracy_gb * 100:.2f}%")
|
56 |
+
print(f"Confusion Matrix:\n {conf_matrix_gb}\n")
|
57 |
+
|
58 |
+
# Predict probabilities
|
59 |
+
y_pred_prob_gb = gradient_boosting.predict_proba(X_test)[:, 1]
|
60 |
+
|
61 |
+
# Predict class labels
|
62 |
+
y_pred_gb = gradient_boosting.predict(X_test)
|
63 |
+
|
64 |
+
# Calculate R² Score, RMSE, MSE, and MAE for Gradient Boosting
|
65 |
+
r2_gb = r2_score(y_test, y_pred_prob_gb)
|
66 |
+
rmse_gb = sqrt(mean_squared_error(y_test, y_pred_prob_gb))
|
67 |
+
mse_gb = mean_squared_error(y_test, y_pred_prob_gb)
|
68 |
+
mae_gb = mean_absolute_error(y_test, y_pred_prob_gb)
|
69 |
+
|
70 |
+
# Print Accuracy, R², RMSE, MSE, and MAE for Gradient Boosting
|
71 |
+
print(f"Gradient Boosting Accuracy: {accuracy_gb * 100:.2f}%")
|
72 |
+
print(f"R² Score: {r2_gb:.4f}, RMSE: {rmse_gb:.4f}, MSE: {mse_gb:.4f}, MAE: {mae_gb:.4f}")
|
73 |
+
print(f"Confusion Matrix:\n {conf_matrix_gb}\n")
|
74 |
+
|
75 |
+
xgboost = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42)
|
76 |
+
|
77 |
+
|
78 |
+
# Train and evaluate XGBoost
|
79 |
+
xgboost.fit(X_train, y_train)
|
80 |
+
y_pred_xgb = xgboost.predict(X_test)
|
81 |
+
accuracy_xgb = accuracy_score(y_test, y_pred_xgb)
|
82 |
+
conf_matrix_xgb = confusion_matrix(y_test, y_pred_xgb)
|
83 |
+
|
84 |
+
print(f"XGBoost Accuracy: {accuracy_xgb * 100:.2f}%")
|
85 |
+
print(f"Confusion Matrix:\n {conf_matrix_xgb}\n")
|
86 |
+
|
87 |
+
y_pred_prob_xgb = xgboost.predict_proba(X_test)[:, 1]
|
88 |
+
|
89 |
+
y_pred_xgb = xgboost.predict(X_test)
|
90 |
+
|
91 |
+
# Calculate R² Score, RMSE, MSE, and MAE for XGBoost
|
92 |
+
r2_xgb = r2_score(y_test, y_pred_prob_xgb)
|
93 |
+
rmse_xgb = sqrt(mean_squared_error(y_test, y_pred_prob_xgb))
|
94 |
+
mse_xgb = mean_squared_error(y_test, y_pred_prob_xgb)
|
95 |
+
mae_xgb = mean_absolute_error(y_test, y_pred_prob_xgb)
|
96 |
+
|
97 |
+
# Print Accuracy, R², RMSE, MSE, and MAE for XGBoost
|
98 |
+
print(f"XGBoost Accuracy: {accuracy_xgb * 100:.2f}%")
|
99 |
+
print(f"R² Score: {r2_xgb:.4f}, RMSE: {rmse_xgb:.4f}, MSE: {mse_xgb:.4f}, MAE: {mae_xgb:.4f}")
|
100 |
+
print(f"Confusion Matrix:\n {conf_matrix_xgb}\n")
|
101 |
+
|
102 |
+
lightgbm = LGBMClassifier(random_state=42)
|
103 |
+
|
104 |
+
# Train and evaluate LightGBM
|
105 |
+
lightgbm.fit(X_train, y_train)
|
106 |
+
y_pred_lgbm = lightgbm.predict(X_test)
|
107 |
+
accuracy_lgbm = accuracy_score(y_test, y_pred_lgbm)
|
108 |
+
conf_matrix_lgbm = confusion_matrix(y_test, y_pred_lgbm)
|
109 |
+
|
110 |
+
|
111 |
+
print(f"LightGBM Accuracy: {accuracy_lgbm * 100:.2f}%")
|
112 |
+
print(f"Confusion Matrix:\n {conf_matrix_lgbm}\n")
|
113 |
+
|
114 |
+
y_pred_prob_lgbm = lightgbm.predict_proba(X_test)[:, 1]
|
115 |
+
|
116 |
+
y_pred_lgbm = lightgbm.predict(X_test)
|
117 |
+
|
118 |
+
# Calculate R² Score, RMSE, MSE, and MAE for LightGBM
|
119 |
+
r2_lgbm = r2_score(y_test, y_pred_prob_lgbm)
|
120 |
+
rmse_lgbm = sqrt(mean_squared_error(y_test, y_pred_prob_lgbm))
|
121 |
+
mse_lgbm = mean_squared_error(y_test, y_pred_prob_lgbm)
|
122 |
+
mae_lgbm = mean_absolute_error(y_test, y_pred_prob_lgbm)
|
123 |
+
|
124 |
+
|
125 |
+
# Print Accuracy, R², RMSE, MSE, and MAE for LightGBM
|
126 |
+
print(f"LightGBM Accuracy: {accuracy_lgbm * 100:.2f}%")
|
127 |
+
print(f"R² Score: {r2_lgbm:.4f}, RMSE: {rmse_lgbm:.4f}, MSE: {mse_lgbm:.4f}, MAE: {mae_lgbm:.4f}")
|
128 |
+
print(f"Confusion Matrix:\n {conf_matrix_lgbm}\n")
|
129 |
+
|
130 |
+
import joblib
|
131 |
+
|
132 |
+
# Assuming you have already trained the model (e.g., GradientBoostingClassifier, XGBoost, etc.)
|
133 |
+
# Example with a Gradient Boosting model (replace with your trained model)
|
134 |
+
from sklearn.ensemble import GradientBoostingClassifier
|
135 |
+
|
136 |
+
# Assuming you have trained a model
|
137 |
+
model = GradientBoostingClassifier(random_state=42)
|
138 |
+
model.fit(X_train, y_train) # Replace this with your actual training code
|
139 |
+
|
140 |
+
# Save the trained model as a .pkl file
|
141 |
+
joblib.dump(model, 'trained_model.pkl')
|
142 |
+
|
143 |
+
print("Model saved successfully as trained_model.pkl")
|
144 |
+
|
145 |
+
|
146 |
+
def predict_cvd(Age, Gender, BMI, Blood_pressure, cholesterol, Bacteroides_fragilis, Faecalibacterium_prausnitzii,
|
147 |
+
Akkermansia_muciniphila, Ruminococcus_bromii, Microbiome_Diversity):
|
148 |
+
|
149 |
+
# Convert Gender to numerical (assuming Male: 0, Female: 1)
|
150 |
+
Gender = 1 if Gender.lower() == 'female' else 0
|
151 |
+
|
152 |
+
# Prepare the input data as a dataframe
|
153 |
+
input_data = pd.DataFrame({
|
154 |
+
'Age': [Age],
|
155 |
+
'Gender': [Gender],
|
156 |
+
'BMI': [BMI],
|
157 |
+
'Blood_pressure': [Blood_pressure],
|
158 |
+
'cholesterol': [cholesterol],
|
159 |
+
'Bacteroides_fragilis': [Bacteroides_fragilis],
|
160 |
+
'Faecalibacterium_prausnitzii': [Faecalibacterium_prausnitzii],
|
161 |
+
'Akkermansia_muciniphila': [Akkermansia_muciniphila],
|
162 |
+
'Ruminococcus_bromii': [Ruminococcus_bromii],
|
163 |
+
'Microbiome_Diversity': [Microbiome_Diversity]
|
164 |
+
})
|
165 |
+
|
166 |
+
print(input_data) # Print the input to debug
|
167 |
+
|
168 |
+
# Predict CVD status (0 or 1)
|
169 |
+
prediction = model.predict(input_data)
|
170 |
+
|
171 |
+
# Return the result
|
172 |
+
return "Cardiovascular Disease Detected" if prediction[0] == 1 else "No Cardiovascular Disease Detected"
|
173 |
+
|
174 |
+
import gradio as gr
|
175 |
+
import pandas as pd
|
176 |
+
import joblib
|
177 |
+
|
178 |
+
# Load the pre-trained model
|
179 |
+
model = joblib.load('trained_model.pkl')
|
180 |
+
|
181 |
+
# Define the prediction function
|
182 |
+
def predict_cvd(Age, Gender, BMI, Blood_pressure, Cholesterol, Bacteroides_fragilis, Faecalibacterium_prausnitzii,
|
183 |
+
Akkermansia_muciniphila, Ruminococcus_bromii, Microbiome_Diversity):
|
184 |
+
|
185 |
+
try:
|
186 |
+
# Convert Gender to numerical (assuming Male: 0, Female: 1)
|
187 |
+
Gender = 1 if Gender.lower() == 'female' else 0
|
188 |
+
|
189 |
+
# Prepare the input data as a dataframe with correctly capitalized feature names
|
190 |
+
input_data = pd.DataFrame({
|
191 |
+
'Age': [Age],
|
192 |
+
'Gender': [Gender],
|
193 |
+
'BMI': [BMI],
|
194 |
+
'Blood_pressure': [Blood_pressure],
|
195 |
+
'Cholesterol': [Cholesterol], # Note the capital "C"
|
196 |
+
'Bacteroides_fragilis': [Bacteroides_fragilis],
|
197 |
+
'Faecalibacterium_prausnitzii': [Faecalibacterium_prausnitzii],
|
198 |
+
'Akkermansia_muciniphila': [Akkermansia_muciniphila],
|
199 |
+
'Ruminococcus_bromii': [Ruminococcus_bromii],
|
200 |
+
'Microbiome_Diversity': [Microbiome_Diversity]
|
201 |
+
})
|
202 |
+
|
203 |
+
# Make prediction
|
204 |
+
prediction = model.predict(input_data)
|
205 |
+
|
206 |
+
# Return result based on prediction
|
207 |
+
return "Cardiovascular Disease Detected" if prediction[0] == 1 else "No Cardiovascular Disease Detected"
|
208 |
+
|
209 |
+
except Exception as e:
|
210 |
+
return f"An error occurred: {str(e)}"
|
211 |
+
|
212 |
+
# Define Gradio inputs with proper ranges and selections
|
213 |
+
inputs = [
|
214 |
+
gr.Slider(18, 100, step=1, value=50, label="Age"),
|
215 |
+
gr.Dropdown(['Male', 'Female'], label="Gender"),
|
216 |
+
gr.Slider(10.0, 50.0, step=0.1, value=25.0, label="BMI"),
|
217 |
+
gr.Slider(90, 200, step=1, value=120, label="Blood Pressure"),
|
218 |
+
gr.Slider(100, 300, step=1, value=180, label="Cholesterol"), # Corrected capitalization
|
219 |
+
gr.Slider(0.0, 10.0, step=0.1, value=5.0, label="Bacteroides Fragilis Level"),
|
220 |
+
gr.Slider(0.0, 10.0, step=0.1, value=5.0, label="Faecalibacterium Prausnitzii Level"),
|
221 |
+
gr.Slider(0.0, 10.0, step=0.1, value=5.0, label="Akkermansia Muciniphila Level"),
|
222 |
+
gr.Slider(0.0, 10.0, step=0.1, value=5.0, label="Ruminococcus Bromii Level"),
|
223 |
+
gr.Slider(0.0, 10.0, step=0.1, value=5.0, label="Microbiome Diversity"),
|
224 |
+
]
|
225 |
+
|
226 |
+
# Define Gradio interface
|
227 |
+
iface = gr.Interface(fn=predict_cvd, inputs=inputs, outputs="text", title="Cardiovascular Disease Prediction")
|
228 |
+
|
229 |
+
# Launch the interface
|
230 |
+
iface.launch()
|
gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
scikit-learn
|
2 |
+
seaborn
|
3 |
+
xgboost
|
4 |
+
lightgbm
|