Spaces:
Paused
Paused
add files
Browse files- app.py +54 -0
- data/pdf/0.pdf +0 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import openai
|
4 |
+
from langchain import hub
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
6 |
+
from langchain_community.vectorstores import Chroma
|
7 |
+
from langchain_core.output_parsers import StrOutputParser
|
8 |
+
from langchain_core.runnables import RunnablePassthrough
|
9 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
10 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
11 |
+
|
12 |
+
|
13 |
+
data_root = './data/pdf/'
|
14 |
+
pdf_paths = [data_root+path for path in os.listdir(data_root)]
|
15 |
+
|
16 |
+
loaders = [PyPDFLoader(path) for path in pdf_paths]
|
17 |
+
|
18 |
+
docs = []
|
19 |
+
for loader in loaders:
|
20 |
+
docs.extend(
|
21 |
+
loader.load()[0:] # skip first page
|
22 |
+
)
|
23 |
+
|
24 |
+
chunk_size = 500
|
25 |
+
chunk_overlap = 100
|
26 |
+
|
27 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size,
|
28 |
+
chunk_overlap=chunk_overlap)
|
29 |
+
|
30 |
+
splits = text_splitter.split_documents(docs)
|
31 |
+
|
32 |
+
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
|
33 |
+
retriever = vectorstore.as_retriever()
|
34 |
+
prompt = hub.pull("rlm/rag-prompt")
|
35 |
+
# model_name = 'gpt-3.5-turbo-0125'
|
36 |
+
model_name = 'gpt-4-1106-preview'
|
37 |
+
llm = ChatOpenAI(model_name=model_name, temperature=0)
|
38 |
+
|
39 |
+
def format_docs(docs):
|
40 |
+
return '\n\n'.join(doc.page_content for doc in docs)
|
41 |
+
|
42 |
+
rag_chain = (
|
43 |
+
{"context": retriever | format_docs, "question": RunnablePassthrough()}
|
44 |
+
| prompt
|
45 |
+
| llm
|
46 |
+
| StrOutputParser()
|
47 |
+
)
|
48 |
+
|
49 |
+
def predict(query):
|
50 |
+
return rag_chain.invoke(query)
|
51 |
+
|
52 |
+
textbox = gr.Textbox(label="اكتب سؤالك هنا", placeholder="", lines=4)
|
53 |
+
iface = gr.Interface(fn=predict, inputs=textbox, outputs="text")
|
54 |
+
iface.launch()
|
data/pdf/0.pdf
ADDED
Binary file (468 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
langchain-community
|
3 |
+
langchainhub
|
4 |
+
langchain-openai
|
5 |
+
chromadb
|
6 |
+
bs4
|
7 |
+
pypdf
|