Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,8 @@ import streamlit as st
|
|
2 |
from dotenv import load_dotenv
|
3 |
from PyPDF2 import PdfReader
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
-
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
|
|
6 |
from langchain.vectorstores import FAISS
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
from langchain.chains import ConversationalRetrievalChain
|
@@ -43,8 +44,13 @@ def get_vector_store(text_chunks):
|
|
43 |
|
44 |
# For Huggingface Embeddings
|
45 |
|
46 |
-
embeddings = HuggingFaceInstructEmbeddings(model_name = "hkunlp/instructor-xl")
|
|
|
|
|
47 |
|
|
|
|
|
|
|
48 |
vectorstore = FAISS.from_texts(texts = text_chunks, embedding = embeddings)
|
49 |
|
50 |
return vectorstore
|
@@ -58,7 +64,14 @@ def get_conversation_chain(vector_store):
|
|
58 |
|
59 |
# HuggingFace Model
|
60 |
|
61 |
-
llm = HuggingFaceHub(repo_id="tiiuae/falcon-40b-instruct", model_kwargs={"temperature":0.5, "max_length":512})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
64 |
|
|
|
2 |
from dotenv import load_dotenv
|
3 |
from PyPDF2 import PdfReader
|
4 |
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
|
6 |
+
from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
8 |
from langchain.memory import ConversationBufferMemory
|
9 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
44 |
|
45 |
# For Huggingface Embeddings
|
46 |
|
47 |
+
#embeddings = HuggingFaceInstructEmbeddings(model_name = "hkunlp/instructor-xl")
|
48 |
+
#embeddings = HuggingFaceInstructEmbeddings(model_name = "sentence-transformers/all-MiniLM-L6-v2")
|
49 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
50 |
|
51 |
+
HUGGINGFACEHUB_API_TOKEN = "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"
|
52 |
+
#model_id = "sentence-transformers/all-MiniLM-L6-v2"
|
53 |
+
|
54 |
vectorstore = FAISS.from_texts(texts = text_chunks, embedding = embeddings)
|
55 |
|
56 |
return vectorstore
|
|
|
64 |
|
65 |
# HuggingFace Model
|
66 |
|
67 |
+
#llm = HuggingFaceHub(repo_id="tiiuae/falcon-40b-instruct", model_kwargs={"temperature":0.5, "max_length":512})
|
68 |
+
repo_id="HuggingFaceH4/starchat-beta"
|
69 |
+
llm = HuggingFaceHub(repo_id=repo_id,
|
70 |
+
model_kwargs={"min_length":100,
|
71 |
+
"max_new_tokens":1024, "do_sample":True,
|
72 |
+
"temperature":0.1,
|
73 |
+
"top_k":50,
|
74 |
+
"top_p":0.95, "eos_token_id":49155})
|
75 |
|
76 |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
77 |
|