import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI from htmlTemplates import bot_template, user_template, css def get_pdf_text(pdf_files): text = "" for pdf_file in pdf_files: reader = PdfReader(pdf_file) for page in reader.pages: text += page.extract_text() return text def get_chunk_text(text): text_splitter = CharacterTextSplitter( separator = "\n", chunk_size = 1000, chunk_overlap = 200, length_function = len ) chunks = text_splitter.split_text(text) return chunks def get_vector_store(text_chunks): # For OpenAI Embeddings # embeddings = OpenAIEmbeddings() # For Huggingface Embeddings #embeddings = HuggingFaceInstructEmbeddings(model_name = "hkunlp/instructor-xl") #embeddings = HuggingFaceInstructEmbeddings(model_name = "sentence-transformers/all-MiniLM-L6-v2") embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") HUGGINGFACEHUB_API_TOKEN = "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" #model_id = "sentence-transformers/all-MiniLM-L6-v2" vectorstore = FAISS.from_texts(texts = text_chunks, embedding = embeddings) return vectorstore def get_conversation_chain(vector_store): # OpenAI Model # llm = ChatOpenAI() # HuggingFace Model #llm = HuggingFaceHub(repo_id="tiiuae/falcon-40b-instruct", model_kwargs={"temperature":0.5, "max_length":512}) repo_id="HuggingFaceH4/starchat-beta" llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"min_length":100, "max_new_tokens":1024, "do_sample":True, "temperature":0.1, "top_k":50, "top_p":0.95, "eos_token_id":49155}) memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm = llm, retriever = vector_store.as_retriever(), memory = memory ) return conversation_chain def handle_user_input(question): response = st.session_state.conversation({'question':question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) def main(): load_dotenv() st.set_page_config(page_title='Chat with Your own PDFs', page_icon=':books:') st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header('Chat with Your own PDFs :books:') question = st.text_input("Ask anything to your PDF: ") if question: handle_user_input(question) with st.sidebar: st.subheader("Upload your Documents Here: ") pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=['pdf'], accept_multiple_files=True) if st.button("OK"): with st.spinner("Processing your PDFs..."): # Get PDF Text raw_text = get_pdf_text(pdf_files) # Get Text Chunks text_chunks = get_chunk_text(raw_text) # Create Vector Store vector_store = get_vector_store(text_chunks) st.write("DONE") # Create conversation chain st.session_state.conversation = get_conversation_chain(vector_store)