File size: 7,754 Bytes
5183c55
 
1e967b6
569997f
5183c55
 
569997f
5183c55
 
 
 
fe20e23
5183c55
569997f
 
 
 
5183c55
 
 
 
 
 
 
528a1dd
 
477f0dd
 
569997f
38fb9fa
5183c55
 
 
4375452
 
5f44d9c
 
569997f
a9406b1
bd9ed9e
a9406b1
528a1dd
569997f
5183c55
 
 
 
 
ba7df7d
5183c55
 
ba7df7d
569997f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5183c55
 
 
5274c63
 
 
 
 
5183c55
3991507
 
 
 
5183c55
569997f
 
 
aa76768
569997f
 
 
 
 
 
5183c55
 
 
 
 
 
 
569997f
 
 
 
 
5543715
569997f
 
 
 
 
 
 
684d54b
569997f
 
a2ccb53
 
 
569997f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5183c55
 
 
569997f
 
 
 
 
 
5183c55
569997f
fe20e23
569997f
ba7df7d
5183c55
569997f
 
5183c55
569997f
 
 
 
 
5183c55
569997f
5183c55
569997f
1260467
c606fbe
3543f19
 
 
5183c55
 
 
 
 
 
 
 
 
3543f19
 
5165853
5183c55
 
 
917421d
5165853
c3ead87
5183c55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f845db5
5183c55
 
c606fbe
5183c55
 
 
 
 
 
5165853
f845db5
5183c55
 
 
aa3ba27
8083ac1
 
aa3ba27
0e36291
5134c5b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import streamlit as st
import pandas as pd
import sentencepiece

# ๋ชจ๋ธ ์ค€๋น„ํ•˜๊ธฐ
from transformers import XLMRobertaForSequenceClassification, XLMRobertaTokenizer
from torch.utils.data import DataLoader, Dataset
import numpy as np
import pandas as pd
import torch
import os
from tqdm import tqdm

# [theme]
# base="dark"
# primaryColor="purple"

# ์ œ๋ชฉ ์ž…๋ ฅ
st.header('ํ•œ๊ตญํ‘œ์ค€์‚ฐ์—…๋ถ„๋ฅ˜ ์ž๋™์ฝ”๋”ฉ ์„œ๋น„์Šค')

# ์žฌ๋กœ๋“œ ์•ˆํ•˜๋„๋ก
@st.experimental_memo(max_entries=20)
def md_loading():
    ## cpu
    device = torch.device("cpu")

    tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-base')
    model = XLMRobertaForSequenceClassification.from_pretrained('xlm-roberta-base', num_labels=493)
    
    model_checkpoint = 'en_ko_4mix_proto.bin'
    project_path = './'
    output_model_file = os.path.join(project_path, model_checkpoint)

#    model.load_state_dict(torch.load(output_model_file))
    model.load_state_dict(torch.load(output_model_file, map_location=torch.device('cpu')))
#    ckpt = torch.load(output_model_file, map_location=torch.device('cpu'))
#    model.load_state_dict(ckpt['model_state_dict'])
    
#    device = torch.device("cuda" if torch.cuda.is_available() and not False else "cpu")
#    device = torch.device("cpu")
        
    model.to(device)
    
    label_tbl = np.load('./label_table.npy')
    loc_tbl = pd.read_csv('./kisc_table.csv', encoding='utf-8')

    print('ready')

    return tokenizer, model, label_tbl, loc_tbl, device

# ๋ชจ๋ธ ๋กœ๋“œ
tokenizer, model, label_tbl, loc_tbl, device = md_loading()


# ๋ฐ์ดํ„ฐ ์…‹ ์ค€๋น„์šฉ
max_len = 64    # 64

class TVT_Dataset(Dataset):
    
    def __init__(self, df):
        self.df_data = df
        
    def __getitem__(self, index):
    
        # ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์นผ๋Ÿผ ๋“ค๊ณ ์˜ค๊ธฐ
        # sentence = self.df_data.loc[index, 'text']
        sentence = self.df_data.loc[index, ['CMPNY_NM', 'MAJ_ACT', 'WORK_TYPE', 'POSITION', 'DEPT_NM']]
        
        encoded_dict = tokenizer(
                    ' <s> '.join(sentence.to_list()),            
                    add_special_tokens = True,      
                    max_length = max_len,
                    padding='max_length',
                    truncation=True,
                    return_attention_mask = True,   
                    return_tensors = 'pt')
        
        
        padded_token_list = encoded_dict['input_ids'][0]
        att_mask = encoded_dict['attention_mask'][0]
        
        # ์ˆซ์ž๋กœ ๋ณ€ํ™˜๋œ label์„ ํ…์„œ๋กœ ๋ณ€ํ™˜
        # target = torch.tensor(self.df_data.loc[index, 'NEW_CD'])
        # input_ids, attention_mask, label์„ ํ•˜๋‚˜์˜ ์ธํ’‹์œผ๋กœ ๋ฌถ์Œ
        # sample = (padded_token_list, att_mask, target)
        sample = (padded_token_list, att_mask)

        return sample

    def __len__(self):
        return len(self.df_data)



# ํ…์ŠคํŠธ input ๋ฐ•์Šค
business = st.text_input('')
# business_work = st.text_input('์‚ฌ์—…์ฒด ํ•˜๋Š”์ผ')
# work_department = st.text_input('๊ทผ๋ฌด๋ถ€์„œ')
# work_position = st.text_input('์ง์ฑ…')
# what_do_i = st.text_input('๋‚ด๊ฐ€ ํ•˜๋Š” ์ผ')

business_work = ''
work_department = ''
work_position = ''
what_do_i = ''

# data ์ค€๋น„

# test dataset์„ ๋งŒ๋“ค์–ด์ค๋‹ˆ๋‹ค. 
input_col_type = ['CMPNY_NM', 'MAJ_ACT', 'WORK_TYPE', 'POSITION', 'DEPT_NM']

def preprocess_dataset(dataset):
    dataset.reset_index(drop=True, inplace=True)
    dataset.fillna('')
    return dataset[input_col_type]


## ์ž„์‹œ ํ™•์ธ
# st.write(md_input)

# ๋ฒ„ํŠผ
if st.button('ํ™•์ธ'):
    ## ๋ฒ„ํŠผ ํด๋ฆญ ์‹œ ์ˆ˜ํ–‰์‚ฌํ•ญ
    
    ### ๋ฐ์ดํ„ฐ ์ค€๋น„
        
    # md_input: ๋ชจ๋ธ์— ์ž…๋ ฅํ•  input ๊ฐ’ ์ •์˜
    # md_input = '|'.join([business, business_work, what_do_i, work_position, work_department])
    md_input = [str(business), str(business_work), str(what_do_i), str(work_position), str(work_department)]

    test_dataset = pd.DataFrame({
        input_col_type[0]: md_input[0],
        input_col_type[1]: md_input[1],
        input_col_type[2]: md_input[2],
        input_col_type[3]: md_input[3],
        input_col_type[4]: md_input[4]
    }, index=[0])

    # test_dataset = pd.read_csv(DATA_IN_PATH + test_set_name, sep='|', na_filter=False)
    
    test_dataset.reset_index(inplace=True)
    
    test_dataset = preprocess_dataset(test_dataset)

    print(len(test_dataset))
    print(test_dataset)

    print('base_data_loader ์‚ฌ์šฉ ์‹œ์ ์ ')
    test_data = TVT_Dataset(test_dataset)

    train_batch_size = 48

    # batch_size ๋งŒํผ ๋ฐ์ดํ„ฐ ๋ถ„ํ• 
    test_dataloader = DataLoader(test_data,
                                batch_size=train_batch_size,
                                shuffle=False)


    ### ๋ชจ๋ธ ์‹คํ–‰


    # Put model in evaluation mode
    model.eval()
    model.zero_grad()

    # Tracking variables 
    predictions , true_labels = [], []

    # Predict 
    for batch in tqdm(test_dataloader):
        # Add batch to GPU
        batch = tuple(t.to(device) for t in batch)

        # Unpack the inputs from our dataloader
        test_input_ids, test_attention_mask = batch

        # Telling the model not to compute or store gradients, saving memory and 
        # speeding up prediction
        with torch.no_grad():
            # Forward pass, calculate logit predictions
            outputs = model(test_input_ids, token_type_ids=None, attention_mask=test_attention_mask)

        logits = outputs.logits

        # Move logits and labels to CPU
#        logits = logits.detach().cpu().numpy()

    pred_m = torch.nn.Softmax(dim=1)
    pred_ = pred_m(logits)
    # st.write(logits.size())
    # # ๋‹จ๋… ์˜ˆ์ธก ์‹œ
    # arg_idx = torch.argmax(logits, dim=1)
    # print('arg_idx:', arg_idx)

    # num_ans = label_tbl[arg_idx]
    # str_ans = loc_tbl['ํ•ญ๋ชฉ๋ช…'][loc_tbl['์ฝ”๋“œ'] == num_ans].values

    # ์ƒ์œ„ k๋ฒˆ์งธ๊นŒ์ง€ ์˜ˆ์ธก ์‹œ
    k = 10
    topk_idx = torch.topk(pred_.flatten(), k).indices
    topk_values = torch.topk(pred_.flatten(), k).values


    num_ans_topk = label_tbl[topk_idx]
    str_ans_topk = [loc_tbl['ํ•ญ๋ชฉ๋ช…'][loc_tbl['์ฝ”๋“œ'] == k] for k in num_ans_topk]
    percent_ans_topk = topk_values.numpy()
    
    # st.write(sum(torch.topk(pred_.flatten(), 493).values.numpy()))
    # print(num_ans, str_ans)
    # print(num_ans_topk)

    # print('์‚ฌ์—…์ฒด๋ช…:', query_tokens[0])
    # print('์‚ฌ์—…์ฒด ํ•˜๋Š”์ผ:', query_tokens[1])
    # print('๊ทผ๋ฌด๋ถ€์„œ:', query_tokens[2])
    # print('์ง์ฑ…:', query_tokens[3])
    # print('๋‚ด๊ฐ€ ํ•˜๋Š”์ผ:', query_tokens[4])
    # print('์‚ฐ์—…์ฝ”๋“œ ๋ฐ ๋ถ„๋ฅ˜:', num_ans, str_ans)

    # ans = ''
    # ans1, ans2, ans3 = '', '', ''

    ## ๋ชจ๋ธ ๊ฒฐ๊ณผ๊ฐ’ ์ถœ๋ ฅ
    # st.write("์‚ฐ์—…์ฝ”๋“œ ๋ฐ ๋ถ„๋ฅ˜:", num_ans, str_ans[0])
    # st.write("์„ธ๋ถ„๋ฅ˜ ์ฝ”๋“œ")
    # for i in range(k):
    #     st.write(str(i+1) + '์ˆœ์œ„:', num_ans_topk[i], str_ans_topk[i].iloc[0])

    # print(num_ans)
    # print(str_ans, type(str_ans))

    str_ans_topk_list = []
    percent_ans_topk_list = []
    for i in range(k):
        str_ans_topk_list.append(str_ans_topk[i].iloc[0])
        percent_ans_topk_list.append(percent_ans_topk[i]*100)

    # print(str_ans_topk_list)

    ans_topk_df = pd.DataFrame({
        'NO': range(1, k+1),
        '์„ธ๋ถ„๋ฅ˜ ์ฝ”๋“œ': num_ans_topk,
        '์„ธ๋ถ„๋ฅ˜ ๋ช…์นญ': str_ans_topk_list,
        'ํ™•๋ฅ ': percent_ans_topk_list
    })
    ans_topk_df = ans_topk_df.set_index('NO')

#    ans_topk_df.style.bar(subset='ํ™•๋ฅ ', align='left', color='blue')
#    ans_topk_df['ํ™•๋ฅ '].style.applymap(color='black', font_color='blue')

#    st.dataframe(ans_topk_df)
#    st.dataframe(ans_topk_df.style.bar(subset='ํ™•๋ฅ ', align='left', color='blue'))
    st.write(ans_topk_df.style.bar(subset='ํ™•๋ฅ ', align='left', color='blue'))