Spaces:
Runtime error
Runtime error
File size: 7,754 Bytes
5183c55 1e967b6 569997f 5183c55 569997f 5183c55 fe20e23 5183c55 569997f 5183c55 528a1dd 477f0dd 569997f 38fb9fa 5183c55 4375452 5f44d9c 569997f a9406b1 bd9ed9e a9406b1 528a1dd 569997f 5183c55 ba7df7d 5183c55 ba7df7d 569997f 5183c55 5274c63 5183c55 3991507 5183c55 569997f aa76768 569997f 5183c55 569997f 5543715 569997f 684d54b 569997f a2ccb53 569997f 5183c55 569997f 5183c55 569997f fe20e23 569997f ba7df7d 5183c55 569997f 5183c55 569997f 5183c55 569997f 5183c55 569997f 1260467 c606fbe 3543f19 5183c55 3543f19 5165853 5183c55 917421d 5165853 c3ead87 5183c55 f845db5 5183c55 c606fbe 5183c55 5165853 f845db5 5183c55 aa3ba27 8083ac1 aa3ba27 0e36291 5134c5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import streamlit as st
import pandas as pd
import sentencepiece
# ๋ชจ๋ธ ์ค๋นํ๊ธฐ
from transformers import XLMRobertaForSequenceClassification, XLMRobertaTokenizer
from torch.utils.data import DataLoader, Dataset
import numpy as np
import pandas as pd
import torch
import os
from tqdm import tqdm
# [theme]
# base="dark"
# primaryColor="purple"
# ์ ๋ชฉ ์
๋ ฅ
st.header('ํ๊ตญํ์ค์ฐ์
๋ถ๋ฅ ์๋์ฝ๋ฉ ์๋น์ค')
# ์ฌ๋ก๋ ์ํ๋๋ก
@st.experimental_memo(max_entries=20)
def md_loading():
## cpu
device = torch.device("cpu")
tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-base')
model = XLMRobertaForSequenceClassification.from_pretrained('xlm-roberta-base', num_labels=493)
model_checkpoint = 'en_ko_4mix_proto.bin'
project_path = './'
output_model_file = os.path.join(project_path, model_checkpoint)
# model.load_state_dict(torch.load(output_model_file))
model.load_state_dict(torch.load(output_model_file, map_location=torch.device('cpu')))
# ckpt = torch.load(output_model_file, map_location=torch.device('cpu'))
# model.load_state_dict(ckpt['model_state_dict'])
# device = torch.device("cuda" if torch.cuda.is_available() and not False else "cpu")
# device = torch.device("cpu")
model.to(device)
label_tbl = np.load('./label_table.npy')
loc_tbl = pd.read_csv('./kisc_table.csv', encoding='utf-8')
print('ready')
return tokenizer, model, label_tbl, loc_tbl, device
# ๋ชจ๋ธ ๋ก๋
tokenizer, model, label_tbl, loc_tbl, device = md_loading()
# ๋ฐ์ดํฐ ์
์ค๋น์ฉ
max_len = 64 # 64
class TVT_Dataset(Dataset):
def __init__(self, df):
self.df_data = df
def __getitem__(self, index):
# ๋ฐ์ดํฐํ๋ ์ ์นผ๋ผ ๋ค๊ณ ์ค๊ธฐ
# sentence = self.df_data.loc[index, 'text']
sentence = self.df_data.loc[index, ['CMPNY_NM', 'MAJ_ACT', 'WORK_TYPE', 'POSITION', 'DEPT_NM']]
encoded_dict = tokenizer(
' <s> '.join(sentence.to_list()),
add_special_tokens = True,
max_length = max_len,
padding='max_length',
truncation=True,
return_attention_mask = True,
return_tensors = 'pt')
padded_token_list = encoded_dict['input_ids'][0]
att_mask = encoded_dict['attention_mask'][0]
# ์ซ์๋ก ๋ณํ๋ label์ ํ
์๋ก ๋ณํ
# target = torch.tensor(self.df_data.loc[index, 'NEW_CD'])
# input_ids, attention_mask, label์ ํ๋์ ์ธํ์ผ๋ก ๋ฌถ์
# sample = (padded_token_list, att_mask, target)
sample = (padded_token_list, att_mask)
return sample
def __len__(self):
return len(self.df_data)
# ํ
์คํธ input ๋ฐ์ค
business = st.text_input('')
# business_work = st.text_input('์ฌ์
์ฒด ํ๋์ผ')
# work_department = st.text_input('๊ทผ๋ฌด๋ถ์')
# work_position = st.text_input('์ง์ฑ
')
# what_do_i = st.text_input('๋ด๊ฐ ํ๋ ์ผ')
business_work = ''
work_department = ''
work_position = ''
what_do_i = ''
# data ์ค๋น
# test dataset์ ๋ง๋ค์ด์ค๋๋ค.
input_col_type = ['CMPNY_NM', 'MAJ_ACT', 'WORK_TYPE', 'POSITION', 'DEPT_NM']
def preprocess_dataset(dataset):
dataset.reset_index(drop=True, inplace=True)
dataset.fillna('')
return dataset[input_col_type]
## ์์ ํ์ธ
# st.write(md_input)
# ๋ฒํผ
if st.button('ํ์ธ'):
## ๋ฒํผ ํด๋ฆญ ์ ์ํ์ฌํญ
### ๋ฐ์ดํฐ ์ค๋น
# md_input: ๋ชจ๋ธ์ ์
๋ ฅํ input ๊ฐ ์ ์
# md_input = '|'.join([business, business_work, what_do_i, work_position, work_department])
md_input = [str(business), str(business_work), str(what_do_i), str(work_position), str(work_department)]
test_dataset = pd.DataFrame({
input_col_type[0]: md_input[0],
input_col_type[1]: md_input[1],
input_col_type[2]: md_input[2],
input_col_type[3]: md_input[3],
input_col_type[4]: md_input[4]
}, index=[0])
# test_dataset = pd.read_csv(DATA_IN_PATH + test_set_name, sep='|', na_filter=False)
test_dataset.reset_index(inplace=True)
test_dataset = preprocess_dataset(test_dataset)
print(len(test_dataset))
print(test_dataset)
print('base_data_loader ์ฌ์ฉ ์์ ์ ')
test_data = TVT_Dataset(test_dataset)
train_batch_size = 48
# batch_size ๋งํผ ๋ฐ์ดํฐ ๋ถํ
test_dataloader = DataLoader(test_data,
batch_size=train_batch_size,
shuffle=False)
### ๋ชจ๋ธ ์คํ
# Put model in evaluation mode
model.eval()
model.zero_grad()
# Tracking variables
predictions , true_labels = [], []
# Predict
for batch in tqdm(test_dataloader):
# Add batch to GPU
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from our dataloader
test_input_ids, test_attention_mask = batch
# Telling the model not to compute or store gradients, saving memory and
# speeding up prediction
with torch.no_grad():
# Forward pass, calculate logit predictions
outputs = model(test_input_ids, token_type_ids=None, attention_mask=test_attention_mask)
logits = outputs.logits
# Move logits and labels to CPU
# logits = logits.detach().cpu().numpy()
pred_m = torch.nn.Softmax(dim=1)
pred_ = pred_m(logits)
# st.write(logits.size())
# # ๋จ๋
์์ธก ์
# arg_idx = torch.argmax(logits, dim=1)
# print('arg_idx:', arg_idx)
# num_ans = label_tbl[arg_idx]
# str_ans = loc_tbl['ํญ๋ชฉ๋ช
'][loc_tbl['์ฝ๋'] == num_ans].values
# ์์ k๋ฒ์งธ๊น์ง ์์ธก ์
k = 10
topk_idx = torch.topk(pred_.flatten(), k).indices
topk_values = torch.topk(pred_.flatten(), k).values
num_ans_topk = label_tbl[topk_idx]
str_ans_topk = [loc_tbl['ํญ๋ชฉ๋ช
'][loc_tbl['์ฝ๋'] == k] for k in num_ans_topk]
percent_ans_topk = topk_values.numpy()
# st.write(sum(torch.topk(pred_.flatten(), 493).values.numpy()))
# print(num_ans, str_ans)
# print(num_ans_topk)
# print('์ฌ์
์ฒด๋ช
:', query_tokens[0])
# print('์ฌ์
์ฒด ํ๋์ผ:', query_tokens[1])
# print('๊ทผ๋ฌด๋ถ์:', query_tokens[2])
# print('์ง์ฑ
:', query_tokens[3])
# print('๋ด๊ฐ ํ๋์ผ:', query_tokens[4])
# print('์ฐ์
์ฝ๋ ๋ฐ ๋ถ๋ฅ:', num_ans, str_ans)
# ans = ''
# ans1, ans2, ans3 = '', '', ''
## ๋ชจ๋ธ ๊ฒฐ๊ณผ๊ฐ ์ถ๋ ฅ
# st.write("์ฐ์
์ฝ๋ ๋ฐ ๋ถ๋ฅ:", num_ans, str_ans[0])
# st.write("์ธ๋ถ๋ฅ ์ฝ๋")
# for i in range(k):
# st.write(str(i+1) + '์์:', num_ans_topk[i], str_ans_topk[i].iloc[0])
# print(num_ans)
# print(str_ans, type(str_ans))
str_ans_topk_list = []
percent_ans_topk_list = []
for i in range(k):
str_ans_topk_list.append(str_ans_topk[i].iloc[0])
percent_ans_topk_list.append(percent_ans_topk[i]*100)
# print(str_ans_topk_list)
ans_topk_df = pd.DataFrame({
'NO': range(1, k+1),
'์ธ๋ถ๋ฅ ์ฝ๋': num_ans_topk,
'์ธ๋ถ๋ฅ ๋ช
์นญ': str_ans_topk_list,
'ํ๋ฅ ': percent_ans_topk_list
})
ans_topk_df = ans_topk_df.set_index('NO')
# ans_topk_df.style.bar(subset='ํ๋ฅ ', align='left', color='blue')
# ans_topk_df['ํ๋ฅ '].style.applymap(color='black', font_color='blue')
# st.dataframe(ans_topk_df)
# st.dataframe(ans_topk_df.style.bar(subset='ํ๋ฅ ', align='left', color='blue'))
st.write(ans_topk_df.style.bar(subset='ํ๋ฅ ', align='left', color='blue')) |