|
import numpy as np |
|
import tensorflow as tf |
|
import cv2 |
|
from PIL import Image |
|
import gradio as gr |
|
import os |
|
|
|
|
|
smooth = 1e-15 |
|
|
|
def dice_coef(y_true, y_pred): |
|
y_true = tf.keras.layers.Flatten()(y_true) |
|
y_pred = tf.keras.layers.Flatten()(y_pred) |
|
intersection = tf.reduce_sum(y_true * y_pred) |
|
return (2. * intersection + smooth) / (tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) + smooth) |
|
|
|
def dice_loss(y_true, y_pred): |
|
return 1.0 - dice_coef(y_true, y_pred) |
|
|
|
|
|
model_filename = "model.h5" |
|
model_path = os.path.join(os.path.dirname(__file__), model_filename) |
|
|
|
def load_model(model_path): |
|
try: |
|
model = tf.keras.models.load_model(model_path, custom_objects={'dice_loss': dice_loss, 'dice_coef': dice_coef}, compile=False) |
|
return model |
|
except Exception as e: |
|
print(f"Error loading model: {e}") |
|
return None |
|
|
|
|
|
model = load_model(model_path) |
|
|
|
def perform_inference(image): |
|
if model is None: |
|
print("Model not loaded properly.") |
|
return None, None, None |
|
|
|
|
|
original_shape = image.shape[:2] |
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
image_resized = cv2.resize(image, (256, 256)) |
|
image_normalized = image_resized / 255.0 |
|
image_expanded = np.expand_dims(image_normalized, axis=0) |
|
|
|
|
|
mask = model.predict(image_expanded)[0] |
|
mask_resized = cv2.resize(mask, (original_shape[1], original_shape[0])) |
|
mask_binary = (mask_resized > 0.5).astype(np.uint8) * 255 |
|
|
|
|
|
contours, _ = cv2.findContours(mask_binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) |
|
|
|
|
|
heatmap_img = cv2.applyColorMap(mask_binary, cv2.COLORMAP_JET) |
|
segmented_image = cv2.addWeighted(image, 0.7, heatmap_img, 0.3, 0) |
|
segmented_image_with_box = segmented_image.copy() |
|
|
|
|
|
for contour in contours: |
|
x, y, w, h = cv2.boundingRect(contour) |
|
cv2.rectangle(segmented_image_with_box, (x, y), (x + w, y + h), (0, 0, 255), 2) |
|
cv2.putText(segmented_image_with_box, "Tumour Detected", (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2) |
|
|
|
|
|
|
|
segmented_image_with_box = cv2.cvtColor(segmented_image_with_box, cv2.COLOR_RGB2BGR) |
|
return (Image.fromarray(image), |
|
Image.fromarray(mask_binary.astype(np.uint8)), |
|
Image.fromarray(segmented_image_with_box)) |
|
|
|
|
|
|
|
|
|
def gradio_app(): |
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Input Image", type="numpy") |
|
submit_btn = gr.Button("Submit") |
|
|
|
with gr.Column(): |
|
original_image_output = gr.Image(label="Original Image") |
|
mask_output = gr.Image(label="Predicted Mask") |
|
segmented_image_output= gr.Image(label="Segmented Image") |
|
|
|
|
|
submit_btn.click(perform_inference, inputs=input_image, outputs=[original_image_output, mask_output, segmented_image_output]) |
|
demo.launch() |
|
|
|
|
|
if __name__ == "__main__": |
|
gradio_app() |