Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tensorflow as tf
|
3 |
+
import cv2
|
4 |
+
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Define custom metrics
|
9 |
+
smooth = 1e-15
|
10 |
+
|
11 |
+
def dice_coef(y_true, y_pred):
|
12 |
+
y_true = tf.keras.layers.Flatten()(y_true)
|
13 |
+
y_pred = tf.keras.layers.Flatten()(y_pred)
|
14 |
+
intersection = tf.reduce_sum(y_true * y_pred)
|
15 |
+
return (2. * intersection + smooth) / (tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) + smooth)
|
16 |
+
|
17 |
+
def dice_loss(y_true, y_pred):
|
18 |
+
return 1.0 - dice_coef(y_true, y_pred)
|
19 |
+
|
20 |
+
# Load the model from the same directory as the script
|
21 |
+
model_filename = "model.h5" # Replace with your actual model filename
|
22 |
+
model_path = os.path.join(os.path.dirname(__file__), model_filename) # Construct the full path
|
23 |
+
|
24 |
+
|
25 |
+
def load_model(model_path):
|
26 |
+
try:
|
27 |
+
model = tf.keras.models.load_model(model_path, custom_objects={'dice_loss': dice_loss, 'dice_coef': dice_coef}, compile=False)
|
28 |
+
return model
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Error loading model: {e}")
|
31 |
+
return None
|
32 |
+
|
33 |
+
# Perform inference
|
34 |
+
model = load_model(model_path)
|
35 |
+
|
36 |
+
def perform_inference(image):
|
37 |
+
if model is None:
|
38 |
+
print("Model not loaded properly.")
|
39 |
+
return None, None, None
|
40 |
+
|
41 |
+
# Preprocess the image
|
42 |
+
original_shape = image.shape[:2]
|
43 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
44 |
+
image_resized = cv2.resize(image, (256, 256))
|
45 |
+
image_normalized = image_resized / 255.0
|
46 |
+
image_expanded = np.expand_dims(image_normalized, axis=0)
|
47 |
+
|
48 |
+
# Get the mask from the model prediction
|
49 |
+
mask = model.predict(image_expanded)[0]
|
50 |
+
mask_resized = cv2.resize(mask, (original_shape[1], original_shape[0]))
|
51 |
+
mask_binary = (mask_resized > 0.5).astype(np.uint8) * 255
|
52 |
+
|
53 |
+
|
54 |
+
# Apply the mask to the original image (for better visualization)
|
55 |
+
heatmap_img = cv2.applyColorMap(mask_binary, cv2.COLORMAP_JET)
|
56 |
+
segmented_image = cv2.addWeighted(image, 0.7, heatmap_img, 0.3, 0)
|
57 |
+
|
58 |
+
#Convert back to BGR
|
59 |
+
segmented_image = cv2.cvtColor(segmented_image, cv2.COLOR_RGB2BGR)
|
60 |
+
|
61 |
+
# Convert results to PIL Images
|
62 |
+
return (Image.fromarray(image),
|
63 |
+
Image.fromarray(mask_binary.astype(np.uint8)), #Mask is already multiplied by 255
|
64 |
+
Image.fromarray(segmented_image))
|
65 |
+
|
66 |
+
|
67 |
+
# Gradio app
|
68 |
+
def gradio_app():
|
69 |
+
with gr.Blocks() as demo:
|
70 |
+
with gr.Row():
|
71 |
+
with gr.Column():
|
72 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
73 |
+
submit_btn = gr.Button("Submit")
|
74 |
+
|
75 |
+
with gr.Column():
|
76 |
+
original_image_output = gr.Image(label="Original Image")
|
77 |
+
mask_output = gr.Image(label="Predicted Mask")
|
78 |
+
segmented_image_output= gr.Image(label="Segmented Image")
|
79 |
+
|
80 |
+
|
81 |
+
submit_btn.click(perform_inference, inputs=input_image, outputs=[original_image_output, mask_output, segmented_image_output])
|
82 |
+
|
83 |
+
demo.launch()
|
84 |
+
|
85 |
+
if __name__ == "__main__":
|
86 |
+
gradio_app()
|