Upload 3 files
Browse files- app.py +107 -0
- model.h5 +3 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import tensorflow as tf
|
5 |
+
from PIL import Image
|
6 |
+
from keras import backend as K
|
7 |
+
from keras.metrics import Precision, Recall
|
8 |
+
from vit_keras import vit, utils, layers
|
9 |
+
|
10 |
+
# Page configuration
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="Breast Cancer Classification",
|
13 |
+
page_icon="🏥",
|
14 |
+
layout="centered"
|
15 |
+
)
|
16 |
+
|
17 |
+
# Cache the model loading
|
18 |
+
@st.cache_resource
|
19 |
+
def load_model():
|
20 |
+
try:
|
21 |
+
model = tf.keras.models.load_model(
|
22 |
+
'model.h5',
|
23 |
+
custom_objects={
|
24 |
+
'ClassToken': layers.ClassToken,
|
25 |
+
'f1_score': f1_score
|
26 |
+
},
|
27 |
+
compile=False
|
28 |
+
)
|
29 |
+
return model
|
30 |
+
except Exception as e:
|
31 |
+
st.error(f"Error loading model: {str(e)}")
|
32 |
+
return None
|
33 |
+
|
34 |
+
def f1_score(y_true, y_pred):
|
35 |
+
y_true = K.round(y_true)
|
36 |
+
y_pred = K.round(y_pred)
|
37 |
+
|
38 |
+
tp = K.sum(y_true * y_pred)
|
39 |
+
fp = K.sum((1 - y_true) * y_pred)
|
40 |
+
fn = K.sum(y_true * (1 - y_pred))
|
41 |
+
|
42 |
+
precision = tp / (tp + fp + K.epsilon())
|
43 |
+
recall = tp / (tp + fn + K.epsilon())
|
44 |
+
|
45 |
+
return 2 * precision * recall / (precision + recall + K.epsilon())
|
46 |
+
|
47 |
+
def process_image(image):
|
48 |
+
img_array = np.array(image)
|
49 |
+
image_pred = cv2.cvtColor(img_array, cv2.COLOR_BGR2RGB)
|
50 |
+
resized_image = cv2.resize(image_pred, (224, 224))
|
51 |
+
return np.array([resized_image], dtype='float32') / 255.0
|
52 |
+
|
53 |
+
# App header
|
54 |
+
st.header('🔬 Breast Cancer Classification using Ultrasound')
|
55 |
+
|
56 |
+
# Load model
|
57 |
+
model = load_model()
|
58 |
+
|
59 |
+
if model:
|
60 |
+
model.compile(
|
61 |
+
optimizer='adam',
|
62 |
+
loss='binary_crossentropy',
|
63 |
+
metrics=['accuracy', f1_score]
|
64 |
+
)
|
65 |
+
|
66 |
+
# File uploader
|
67 |
+
uploaded_file = st.file_uploader(
|
68 |
+
"Upload an ultrasound image",
|
69 |
+
type=['jpg', 'jpeg', 'png'],
|
70 |
+
help="Supported formats: JPG, JPEG, PNG"
|
71 |
+
)
|
72 |
+
|
73 |
+
if uploaded_file:
|
74 |
+
try:
|
75 |
+
# Display image
|
76 |
+
col1, col2 = st.columns(2)
|
77 |
+
with col1:
|
78 |
+
image = Image.open(uploaded_file)
|
79 |
+
st.image(image, caption='Uploaded Ultrasound Image', use_column_width=True)
|
80 |
+
|
81 |
+
# Process and predict
|
82 |
+
with st.spinner('Analyzing image...'):
|
83 |
+
processed_image = process_image(image)
|
84 |
+
predictions = model.predict(processed_image, verbose=0)
|
85 |
+
predicted_label_index = tf.argmax(predictions, axis=-1).numpy()[0]
|
86 |
+
|
87 |
+
# Display results
|
88 |
+
with col2:
|
89 |
+
st.subheader("Analysis Results")
|
90 |
+
labels = {'Benign': 0, 'Malignant': 1}
|
91 |
+
result = list(labels.keys())[list(labels.values()).index(predicted_label_index)]
|
92 |
+
confidence = float(predictions[0][predicted_label_index]) * 100
|
93 |
+
|
94 |
+
st.metric("Prediction", result)
|
95 |
+
st.metric("Confidence", f"{confidence:.2f}%")
|
96 |
+
|
97 |
+
if predicted_label_index == 1:
|
98 |
+
st.error("⚠️ Please consult with your doctor as results indicate potential malignancy.")
|
99 |
+
else:
|
100 |
+
st.success("✅ Results suggest benign characteristics.")
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
st.error(f"Error processing image: {str(e)}")
|
104 |
+
else:
|
105 |
+
st.error("Failed to load the model. Please check if model.h5 exists in the correct location.")
|
106 |
+
|
107 |
+
|
model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62f040b88a6fcd237762656ef0d993a3f2588925fd1118045fdb1286a6cd2946
|
3 |
+
size 630297216
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
tensorflow-addons
|
3 |
+
tensorflow-estimator
|
4 |
+
streamlit
|
5 |
+
opencv-python
|
6 |
+
numpy
|
7 |
+
keras
|
8 |
+
vit-keras
|