File size: 7,027 Bytes
b599481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models
This repo provides the source code & data of our paper: [Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models](https://arxiv.org/abs/2305.13112) (Arxiv 2023).
## ๐ Overview
**Highlights**:
- 1๏ธโฃ We are the first to examine ChatGPT in conversational recommendation systematically, the ability of which is **underestimated** in traditional evaluation approach.
- ๐ก We propose a new interactive approach that employs LLM-based user simulators for evaluating CRSs.
- ๐ The recall@50 metric can be boosted from 0.218 to 0.739 on the redial dataset with our new interactive evaluation approach, even surpassing the currently leading CRS baseline.
we propose an **i**nteractive **Eval**uation approach based on **LLM**s named **iEvaLM** that harnesses LLM-based user simulators. We take the ground-truth items from the example as the user preference through the interaction, and use them to set up the persona of the simulated users by LLMs through instructions. To further make a comprehensive evaluation, we consider two types of interaction: *attribute-based question answering* and *free-form chit-chat*.
<p align="center">
<img src="./asset/eval.png" width="75%" height="75% title="Overview of iEvaLM-CRS" alt="">
</p>
## ๐ Quick Start
### Requirements
- python==3.9.16
- torch==1.13.1
- transformers==4.28.1
- torch_geometric==2.3.0
- accelerate==0.18.0
### Download Models
You can download our fine-tuned models from the [link](https://drive.google.com/drive/folders/1h2AcRn3cd9qXToM9hFAXFV5evXJM-wyD?usp=sharing), which include recommendation and conversation models of **KBRD**, **BARCOR** and **UniCRS**. Please put the downloaded model into src/utils/model directory.
### Interact with the user simulator
- dataset: [redial, opendialkg]
- mode: [ask, chat]
- model: [kbrd, barcor, unicrs, chatgpt]
```bash
cd script
bash {dataset}/cache_item.sh
bash {dataset}/{mode}_{model}.sh
```
You can customize your iEvaLM-CRS by specifying these configs:
- `--api_key`: your API key
- `--turn_num`: number of conversation turns. We employ five-round interaction in iEvaLM-CRS.
After the execution, you will find detailed interaction information under "save_{turn_num}/{mode}/{model}/{dataset}/".
### Evaluate
```bash
cd script
bash {dataset}/Rec_eval.sh
```
You can customize your iEvaLM-CRS by specifying these configs:
- `--turn_num`: number of conversation turns.
- `--mode`: [ask, chat]
After the execution, you will find evaluation results under "save_{turn_num}/result/{mode}/{model}/{dataset}.json".
## ๐ Perfermance
<p align="center">Performance of CRSs and ChatGPT using different evaluation approaches.</p>
<table border="1" align="center">
<tbody >
<tr align="center">
<td colspan="2">Model</td>
<td colspan="3">KBRD</td>
<td colspan="3">BARCOR</td>
<td colspan="3">UniCRS</td>
<td colspan="3">ChatGPT</td>
</tr>
<tr align="center">
<td colspan="2">Evaluation Approach</td>
<td>Original</td>
<td>iEvaLM(attr)</td>
<td>iEvaLM(free)</td>
<td>Original</td>
<td>iEvaLM(attr)</td>
<td>iEvaLM(free)</td>
<td>Original</td>
<td>iEvaLM(attr)</td>
<td>iEvaLM(free)</td>
<td>Original</td>
<td>iEvaLM(attr)</td>
<td>iEvaLM(free)</td>
</tr>
<tr align="center">
<td rowspan="3">ReDial</td>
<td>R@1</td>
<td>0.028</td>
<td>0.039</td>
<td>0.035</td>
<td>0.031</td>
<td>0.034</td>
<td>0.034</td>
<td>0.050</td>
<td>0.053</td>
<td>0.107</td>
<td>0.037</td>
<td><b>0.191</b></td>
<td>0.146</td>
</tr>
<tr align="center">
<td>R@10</td>
<td>0.169</td>
<td>0.196</td>
<td>0.198</td>
<td>0.170</td>
<td>0.201</td>
<td>0.190</td>
<td>0.215</td>
<td>0.238</td>
<td>0.317</td>
<td>0.174</td>
<td><b>0.536</b></td>
<td>0.440</td>
</tr>
<tr align="center">
<td>R@50</td>
<td>0.366</td>
<td>0.436</td>
<td>0.453</td>
<td>0.372</td>
<td>0.427</td>
<td>0.467</td>
<td>0.413</td>
<td>0.520</td>
<td>0.602</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr align="center">
<td rowspan="3">OpenDialKG</td>
<td>R@1</td>
<td>0.231</td>
<td>0.131</td>
<td>0.234</td>
<td>0.312</td>
<td>0.264</td>
<td>0.314</td>
<td>0.308</td>
<td>0.180</td>
<td>0.314</td>
<td>0.310</td>
<td>0.299</td>
<td><b>0.400</b></td>
</tr>
<tr align="center">
<td>R@10</td>
<td>0.423</td>
<td>0.293</td>
<td>0.431</td>
<td>0.453</td>
<td>0.423</td>
<td>0.458</td>
<td>0.513</td>
<td>0.393</td>
<td>0.538</td>
<td>0.539</td>
<td>0.604</td>
<td><b>0.715</b></td>
</tr>
<tr align="center">
<td>R@50</td>
<td>0.492</td>
<td>0.377</td>
<td>0.509</td>
<td>0.510</td>
<td>0.482</td>
<td>0.530</td>
<td>0.574</td>
<td>0.458</td>
<td>0.609</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
<p align="center">Persuasiveness of explanations generated by CRSs and ChatGPT.</p>
<table border="1" align="center">
<tbody>
<tr align="center">
<td>Model</td>
<td>Evaluation Approach</td>
<td>ReDial</td>
<td>OpenDialKG</td>
</tr>
<tr align="center">
<td rowspan="2">KBRD</td>
<td>Original</td>
<td>0.638</td>
<td>0.824</td>
</tr>
</tr>
<tr align="center">
<td>iEvaLM</td>
<td>0.766</td>
<td>0.862</td>
</tr>
</tr>
<tr align="center">
<td rowspan="2">BARCOR</td>
<td>Original</td>
<td>0.667</td>
<td>1.149</td>
</tr>
</tr>
<tr align="center">
<td>iEvaLM</td>
<td>0.795</td>
<td>1.211</td>
</tr>
</tr>
<tr align="center">
<td rowspan="2">UniCRS</td>
<td>Original</td>
<td>0.685</td>
<td>1.128</td>
</tr>
</tr>
<tr align="center">
<td>iEvaLM</td>
<td>1.015</td>
<td>1.314</td>
</tr>
</tr>
<tr align="center">
<td rowspan="2">ChatGPT</td>
<td>Original</td>
<td>0.787</td>
<td>1.221</td>
</tr>
</tr>
<tr align="center">
<td>iEvaLM</td>
<td><b>1.331</b></td>
<td><b>1.513</b></td>
</tr>
</tbody>
</table>
[CRSLab](https://github.com/RUCAIBox/CRSLab) will support this interactive evaluation approach, the results in our paper will be updated soon.
## ๐ฎ Contact
If you have any questions for our paper or codes, please send an email to <[email protected]>.
## ๐ฆ Citing
Please cite the following paper if you find our code helpful.
```bibtex
@article{wang2023rethinking,
title={Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models},
author={Wang, Xiaolei and Tang, Xinyu and Zhao, Wayne Xin and Wang, Jingyuan and Wen, Ji-Rong},
journal={arXiv preprint arXiv:2305.13112},
year={2023}
}
```
|