File size: 17,450 Bytes
b599481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import argparse
import copy
import json
import os
import random
import sys
import time
import typing
import warnings
import openai
import tiktoken
from loguru import logger
from tenacity import Retrying, _utils, retry_if_not_exception_type
from tenacity.stop import stop_base
from tenacity.wait import wait_base
sys.path.append("..")
from model.crs_model import CRSModel
warnings.filterwarnings("ignore")
def get_exist_dialog_set():
exist_id_set = set()
for file in os.listdir(save_dir):
file_id = os.path.splitext(file)[0]
exist_id_set.add(file_id)
return exist_id_set
def my_before_sleep(retry_state):
logger.debug(
f"Retrying: attempt {retry_state.attempt_number} ended with: {retry_state.outcome}, spend {retry_state.seconds_since_start} in total"
)
class my_wait_exponential(wait_base):
def __init__(
self,
multiplier: typing.Union[int, float] = 1,
max: _utils.time_unit_type = _utils.MAX_WAIT, # noqa
exp_base: typing.Union[int, float] = 2,
min: _utils.time_unit_type = 0, # noqa
) -> None:
self.multiplier = multiplier
self.min = _utils.to_seconds(min)
self.max = _utils.to_seconds(max)
self.exp_base = exp_base
def __call__(self, retry_state: "RetryCallState") -> float:
if retry_state.outcome == openai.error.Timeout:
return 0
try:
exp = self.exp_base ** (retry_state.attempt_number - 1)
result = self.multiplier * exp
except OverflowError:
return self.max
return max(max(0, self.min), min(result, self.max))
class my_stop_after_attempt(stop_base):
"""Stop when the previous attempt >= max_attempt."""
def __init__(self, max_attempt_number: int) -> None:
self.max_attempt_number = max_attempt_number
def __call__(self, retry_state: "RetryCallState") -> bool:
if retry_state.outcome == openai.error.Timeout:
retry_state.attempt_number -= 1
return retry_state.attempt_number >= self.max_attempt_number
def annotate_completion(prompt, logit_bias=None):
if logit_bias is None:
logit_bias = {}
request_timeout = 20
for attempt in Retrying(
reraise=True,
retry=retry_if_not_exception_type(
(
openai.error.InvalidRequestError,
openai.error.AuthenticationError,
)
),
wait=my_wait_exponential(min=1, max=60),
stop=(my_stop_after_attempt(8)),
):
with attempt:
response = openai.Completion.create(
model="text-davinci-003",
prompt=prompt,
temperature=0,
max_tokens=128,
stop="Recommender",
logit_bias=logit_bias,
request_timeout=request_timeout,
)["choices"][0]["text"]
request_timeout = min(300, request_timeout * 2)
return response
def get_instruction(dataset):
if dataset == "redial_eval":
item_with_year = True
init_ask_instruction = """To recommend me items that I will accept, you can choose one of the following options.
A: ask my preference for genre
B: ask my preference for actor
C: ask my preference for director
D: I can directly give recommendations
Please enter the option character. Please only response a character."""
ask_instruction = """To recommend me items that I will accept, you can choose one of the following options.
A: ask my preference for genre
B: ask my preference for actor
C: ask my preference for director
D: I can directly give recommendations
You have selected {}, do not repeat them. Please enter the option character."""
option2attr = {
"A": "genre",
"B": "star",
"C": "director",
"D": "recommend",
}
option2temaplte = {
"A": "Which genre do you like?",
"B": "Which star do you like?",
"C": "Which director do you like?",
}
elif dataset == "opendialkg_eval":
item_with_year = False
init_ask_instruction = """To recommend me items that I will accept, you can choose one of the following options.
A: ask my preference for genre
B: ask my preference for actor
C: ask my preference for director
D: ask my preference for writer
E: I can directly give recommendations
Please enter the option character. Please only response a character."""
ask_instruction = """To recommend me items that I will accept, you can choose one of the following options.
A: ask my preference for genre
B: ask my preference for actor
C: ask my preference for director
D: ask my preference for writer
E: I can directly give recommendations
You have selected {}, do not repeat them. Please enter the option character."""
option2attr = {
"A": "genre",
"B": "actor",
"C": "director",
"D": "writer",
"E": "recommend",
}
option2temaplte = {
"A": "Which genre do you like?",
"B": "Which actor do you like?",
"C": "Which director do you like?",
"D": "Which writer do you like?",
}
else:
raise Exception("do not support this dataset")
if item_with_year is True:
rec_instruction = "Please give me 10 recommendations according to my preference (Format: no. title (year if exists). No other things except the movie list in your response)."
else:
rec_instruction = "Please give me 10 recommendations according to my preference (Format: no. title. No other things except the item list in your response). You can recommend mentioned items in our dialog."
return (
init_ask_instruction,
ask_instruction,
rec_instruction,
option2attr,
option2temaplte,
)
def get_model_args(model_name):
if model_name == "kbrd":
args_dict = {
"debug": args.debug,
"kg_dataset": args.kg_dataset,
"hidden_size": args.hidden_size,
"entity_hidden_size": args.entity_hidden_size,
"num_bases": args.num_bases,
"rec_model": args.rec_model,
"conv_model": args.conv_model,
"context_max_length": args.context_max_length,
"entity_max_length": args.entity_max_length,
"tokenizer_path": args.tokenizer_path,
"encoder_layers": args.encoder_layers,
"decoder_layers": args.decoder_layers,
"text_hidden_size": args.text_hidden_size,
"attn_head": args.attn_head,
"resp_max_length": args.resp_max_length,
"seed": args.seed,
}
elif model_name == "barcor":
args_dict = {
"debug": args.debug,
"kg_dataset": args.kg_dataset,
"rec_model": args.rec_model,
"conv_model": args.conv_model,
"context_max_length": args.context_max_length,
"resp_max_length": args.resp_max_length,
"tokenizer_path": args.tokenizer_path,
"seed": args.seed,
}
elif model_name == "unicrs":
args_dict = {
"debug": args.debug,
"seed": args.seed,
"kg_dataset": args.kg_dataset,
"tokenizer_path": args.tokenizer_path,
"context_max_length": args.context_max_length,
"entity_max_length": args.entity_max_length,
"resp_max_length": args.resp_max_length,
"text_tokenizer_path": args.text_tokenizer_path,
"rec_model": args.rec_model,
"conv_model": args.conv_model,
"model": args.model,
"num_bases": args.num_bases,
"text_encoder": args.text_encoder,
}
elif model_name == "chatgpt":
args_dict = {
"seed": args.seed,
"debug": args.debug,
"kg_dataset": args.kg_dataset,
}
return args_dict
if __name__ == "__main__":
local_time = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument("--api_key")
parser.add_argument(
"--dataset", type=str, choices=["redial_eval", "opendialkg_eval"]
)
parser.add_argument("--turn_num", type=int, default=5)
parser.add_argument(
"--crs_model",
type=str,
choices=["kbrd", "barcor", "unicrs", "chatgpt"],
)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--debug", action="store_true")
parser.add_argument("--kg_dataset", type=str, choices=["redial", "opendialkg"])
# model_detailed
parser.add_argument("--hidden_size", type=int)
parser.add_argument("--entity_hidden_size", type=int)
parser.add_argument("--num_bases", type=int, default=8)
parser.add_argument("--context_max_length", type=int)
parser.add_argument("--entity_max_length", type=int)
# model
parser.add_argument("--rec_model", type=str)
parser.add_argument("--conv_model", type=str)
# conv
parser.add_argument("--tokenizer_path", type=str)
parser.add_argument("--encoder_layers", type=int)
parser.add_argument("--decoder_layers", type=int)
parser.add_argument("--text_hidden_size", type=int)
parser.add_argument("--attn_head", type=int)
parser.add_argument("--resp_max_length", type=int)
# prompt
parser.add_argument("--model", type=str)
parser.add_argument("--text_tokenizer_path", type=str)
parser.add_argument("--text_encoder", type=str)
args = parser.parse_args()
openai.api_key = args.api_key
save_dir = f"../save_{args.turn_num}/ask/{args.crs_model}/{args.dataset}"
os.makedirs(save_dir, exist_ok=True)
random.seed(args.seed)
# recommender
recommendation_template = "I would recommend the following items:\n\n{}"
# recommender
model_args = get_model_args(args.crs_model)
recommender = CRSModel(crs_model=args.crs_model, **model_args)
# seeker
(
init_ask_instruction,
ask_instruction,
rec_instruction,
option2attr,
option2template,
) = get_instruction(args.dataset)
options = list(option2attr.keys())
# scorer
persuasiveness_template = """Does the explanation make you want to accept the recommendation? Please give your score.
If mention one of [{}], give 2.
Else if you think recommended items are worse than [{}], give 0.
Else if you think recommended items are comparable to [{}] according to the explanation, give 1.
Else if you think recommended items are better than [{}] according to the explanation, give 2.
Only answer the score number."""
encoding = tiktoken.encoding_for_model("text-davinci-003")
logit_bias = {encoding.encode(str(score))[0]: 10 for score in range(3)}
with open(f"../data/{args.kg_dataset}/entity2id.json", "r", encoding="utf-8") as f:
entity2id = json.load(f)
id2entity = {}
for k, v in entity2id.items():
id2entity[int(v)] = k
entity_list = list(entity2id.keys())
name2id = {}
with open(f"../data/{args.kg_dataset}/id2info.json", "r", encoding="utf-8") as f:
id2info = json.load(f)
for k, v in id2info.items():
name2id[v["name"]] = k
dialog_id2data = {}
with open(
f"../data/{args.dataset}/test_data_processed.jsonl", encoding="utf-8"
) as f:
lines = f.readlines()
for line in lines:
line = json.loads(line)
dialog_id = str(line["dialog_id"]) + "_" + str(line["turn_id"])
dialog_id2data[dialog_id] = line
dialog_id_set = set(dialog_id2data.keys()) - get_exist_dialog_set()
while len(dialog_id_set) > 0:
print(len(dialog_id_set))
dialog_id = random.choice(tuple(dialog_id_set))
data = dialog_id2data[dialog_id]
conv_dict = copy.deepcopy(data) # for model
goal_item_list = [f'"{item}"' for item in conv_dict["rec"]]
goal_item_str = ", ".join(goal_item_list)
rec_labels = [name2id[rec] for rec in data["rec"]]
context_dict = [] # for save
for i, text in enumerate(conv_dict["context"]):
if len(text) == 0:
continue
if i % 2 == 0:
role_str = "user"
else:
role_str = "assistant"
context_dict.append({"role": role_str, "content": text})
# dialog state
rec_success = False
asked_options = []
option2index = {"A": 0, "B": 1, "C": 2, "D": 3, "E": 4}
if args.kg_dataset == "redial":
state = [0, 0, 0, 0]
elif args.kg_dataset == "opendialkg":
state = [0, 0, 0, 0, 0]
for i in range(0, args.turn_num):
# seeker
# choose option
if args.crs_model == "chatgpt":
conv_dict["context"].append(init_ask_instruction)
# recommender
# options (list of str): available options, generate one of them
gen_inputs, recommender_text = recommender.get_conv(conv_dict)
if args.crs_model != "chatgpt":
recommender_choose = recommender.get_choice(gen_inputs, options, state)
else:
recommender_choose = recommender.get_choice(
gen_inputs, options, state, conv_dict
)
selected_option = recommender_choose
if selected_option == options[-1]: # choose to rec
# recommender
rec_items, rec_truth = recommender.get_rec(conv_dict)
rec_pred = rec_items[0]
rec_items_str = ""
for j, rec_item in enumerate(rec_pred[:50]):
rec_items_str += f"{i + 1}: {id2entity[rec_item]}\n"
recommender_text = recommendation_template.format(rec_items_str)
# judge whether success
for rec_label in rec_truth:
if rec_label in rec_pred:
rec_success = True
break
context_dict.append(
{
"role": "assistant",
"content": recommender_text,
"rec_items": rec_pred,
"rec_success": rec_success,
"option": selected_option,
}
)
conv_dict["context"].append(recommender_text)
# seeker
if rec_success is True:
seeker_text = "That's perfect, thank you!"
else:
seeker_text = "I don't like them."
context_dict.append({"role": "user", "content": seeker_text})
conv_dict["context"].append(seeker_text)
else: # choose to ask
recommender_text = option2template[selected_option]
context_dict.append(
{
"role": "assistant",
"content": recommender_text,
"option": selected_option,
}
)
conv_dict["context"].append(recommender_text)
# seeker
ask_attr = option2attr[selected_option]
# update state
state[option2index[selected_option]] = -1e5
ans_attr_list = []
for label_id in rec_labels:
if str(label_id) in id2info and ask_attr in id2info[str(label_id)]:
ans_attr_list.extend(id2info[str(label_id)][ask_attr])
if len(ans_attr_list) > 0:
seeker_text = ", ".join(list(set(ans_attr_list)))
else:
seeker_text = "Sorry, no information about this, please choose another option."
context_dict.append(
{
"role": "user",
"content": seeker_text,
"entity": ans_attr_list,
}
)
conv_dict["context"].append(seeker_text)
conv_dict["entity"] += ans_attr_list
if rec_success is True:
break
# score persuasiveness
# seeker_prompt = ''
# for turn_dict in context_dict:
# if turn_dict['role'] == 'user':
# role_str = 'Seeker'
# else:
# role_str = 'Recommender'
# seeker_prompt += f'{role_str}: {turn_dict["content"]}\n'
# persuasiveness_str = persuasiveness_template.format(goal_item_str, goal_item_str, goal_item_str,
# goal_item_str)
# prompt_str_for_persuasiveness = seeker_prompt + persuasiveness_str
# prompt_str_for_persuasiveness += '\nSeeker:'
# persuasiveness_score = annotate_completion(prompt_str_for_persuasiveness, logit_bias).strip()
# save
conv_dict["context"] = context_dict
data["simulator_dialog"] = conv_dict
with open(f"{save_dir}/{dialog_id}.json", "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
dialog_id_set -= get_exist_dialog_set()
|