File size: 5,808 Bytes
b599481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import json
import os
import random
import typing
from argparse import ArgumentParser

import openai
from loguru import logger
from tenacity import _utils, Retrying, retry_if_not_exception_type
from tenacity.stop import stop_base
from tenacity.wait import wait_base


def my_before_sleep(retry_state):
    logger.debug(
        f"Retrying: attempt {retry_state.attempt_number} ended with: {retry_state.outcome}, spend {retry_state.seconds_since_start} in total"
    )


class my_wait_exponential(wait_base):
    def __init__(
        self,
        multiplier: typing.Union[int, float] = 1,
        max: _utils.time_unit_type = _utils.MAX_WAIT,  # noqa
        exp_base: typing.Union[int, float] = 2,
        min: _utils.time_unit_type = 0,  # noqa
    ) -> None:
        self.multiplier = multiplier
        self.min = _utils.to_seconds(min)
        self.max = _utils.to_seconds(max)
        self.exp_base = exp_base

    def __call__(self, retry_state: "RetryCallState") -> float:
        if retry_state.outcome == openai.error.Timeout:
            return 0

        try:
            exp = self.exp_base ** (retry_state.attempt_number - 1)
            result = self.multiplier * exp
        except OverflowError:
            return self.max
        return max(max(0, self.min), min(result, self.max))


class my_stop_after_attempt(stop_base):
    """Stop when the previous attempt >= max_attempt."""

    def __init__(self, max_attempt_number: int) -> None:
        self.max_attempt_number = max_attempt_number

    def __call__(self, retry_state: "RetryCallState") -> bool:
        if retry_state.outcome == openai.error.Timeout:
            retry_state.attempt_number -= 1
        return retry_state.attempt_number >= self.max_attempt_number


def annotate(item_text_list):
    request_timeout = 6
    for attempt in Retrying(
        reraise=True,
        retry=retry_if_not_exception_type(
            (openai.error.InvalidRequestError, openai.error.AuthenticationError)
        ),
        wait=my_wait_exponential(min=1, max=60),
        stop=(my_stop_after_attempt(8)),
        before_sleep=my_before_sleep,
    ):
        with attempt:
            response = openai.Embedding.create(
                model="text-embedding-ada-002",
                input=item_text_list,
                request_timeout=request_timeout,
            )
        request_timeout = min(30, request_timeout * 2)

    return response


def get_exist_item_set():
    exist_item_set = set()
    for file in os.listdir(save_dir):
        user_id = os.path.splitext(file)[0]
        exist_item_set.add(user_id)
    return exist_item_set


if __name__ == "__main__":
    parser = ArgumentParser()
    parser.add_argument("--api_key")
    parser.add_argument("--batch_size", default=1, type=int)
    parser.add_argument("--dataset", type=str, choices=["redial", "opendialkg"])
    args = parser.parse_args()

    openai.api_key = args.api_key
    batch_size = args.batch_size
    dataset = args.dataset

    save_dir = f"../save/embed/item/{dataset}"
    os.makedirs(save_dir, exist_ok=True)

    with open(f"../data/{dataset}/id2info.json", encoding="utf-8") as f:
        id2info = json.load(f)

    # redial
    if dataset == "redial":
        info_list = list(id2info.values())
        item_texts = []
        for info in info_list:
            item_text_list = [
                f"Title: {info['name']}",
                f"Genre: {', '.join(info['genre']).lower()}",
                f"Star: {', '.join(info['star'])}",
                f"Director: {', '.join(info['director'])}",
                f"Plot: {info['plot']}",
            ]
            item_text = "; ".join(item_text_list)
            item_texts.append(item_text)
        attr_list = ["genre", "star", "director"]

    # opendialkg
    if dataset == "opendialkg":
        item_texts = []
        for info_dict in id2info.values():
            item_attr_list = [f'Name: {info_dict["name"]}']
            for attr, value_list in info_dict.items():
                if attr != "title":
                    item_attr_list.append(
                        f"{attr.capitalize()}: " + ", ".join(value_list)
                    )
            item_text = "; ".join(item_attr_list)
            item_texts.append(item_text)
        attr_list = ["genre", "actor", "director", "writer"]

    id2text = {}
    for item_id, info_dict in id2info.items():
        attr_str_list = [f'Title: {info_dict["name"]}']
        for attr in attr_list:
            if attr not in info_dict:
                continue
            if isinstance(info_dict[attr], list):
                value_str = ", ".join(info_dict[attr])
            else:
                value_str = info_dict[attr]
            attr_str_list.append(f"{attr.capitalize()}: {value_str}")
        item_text = "; ".join(attr_str_list)
        id2text[item_id] = item_text

    item_ids = set(id2info.keys()) - get_exist_item_set()
    while len(item_ids) > 0:
        logger.info(len(item_ids))

        # redial
        if dataset == "redial":
            batch_item_ids = random.sample(
                tuple(item_ids), min(batch_size, len(item_ids))
            )
            batch_texts = [id2text[item_id] for item_id in batch_item_ids]

        # opendialkg
        if dataset == "opendialkg":
            batch_item_ids = random.sample(
                tuple(item_ids), min(batch_size, len(item_ids))
            )
            batch_texts = [id2text[item_id] for item_id in batch_item_ids]

        batch_embeds = annotate(batch_texts)["data"]
        for embed in batch_embeds:
            item_id = batch_item_ids[embed["index"]]
            with open(f"{save_dir}/{item_id}.json", "w", encoding="utf-8") as f:
                json.dump(embed["embedding"], f, ensure_ascii=False)

        item_ids -= get_exist_item_set()